
ERCIS – European Research Center for Information Systems
Westfälische Wilhelms-Universität Münster
Leonardo-Campus 3 48149 Münster Germany
Tel: +49 (0)251 83-38100 Fax: +49 (0)251 83-38109
info@ercis.org http://www.ercis.org/

ERCIS – European Research Center for Information Systems
	 Editors	 J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,
		 H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 10

Muggl:
The Muenster Generator of
Glass-box Test Cases

Majchrzak, T. A.
Kuchen, H.

W
or

ki
ng

 P
ap

er
 N

o.
 1

0	
M

ug
gl

: T
he

 M
ue

ns
te

r G
en

er
at

or
 o

f G
la

ss
-b

ox
 T

es
t C

as
es

ISSN 1614-7448

Working Papers

ERCIS – European Research Center for Information Systems
Editors: J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,

H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 10

Muggl:
The Muenster Generator
of Glass-box Test Cases

Tim A. Majchrzak, Herbert Kuchen

ISSN 1614-7448

cite as: Tim A. Majchrzak, Herbert Kuchen: Muggl: The Muenster Generator
of Glass-box Test Cases. In: Working Papers, European Research Center for
Information Systems, number 10. Eds.: Becker, J. et al., Münster 2011.

Contents
Working Paper Sketch . 1

1 Introduction . 3

2 Related Work . 3

3 The Java Virtual Machine . 4
3.1 Basic Concepts . 4
3.2 Data Types . 5
3.3 Architecture and Memory Abstraction . 6
3.4 Class Files . 7
3.5 Execution Unit . 9
3.6 Instruction Set . 9

4 Muggl Basics . 13
4.1 Execution Principles . 13
4.2 Symbolic Execution . 17
4.3 Constraint Solving . 21
4.4 Test Case Generation . 22
4.5 Architecture . 23
4.6 Execution example . 25

5 Distinct Features . 25
5.1 Iterative-Deepening Depth-First Search . 26
5.2 Step-by-Step GUI . 28
5.3 Configurability . 31
5.4 Class File Inspection . 34
5.5 Control-Flow and Data-Flow Coverage . 34
5.6 Test Case Elimination . 37
5.7 Native Wrapper . 37
5.8 Dynamic Optimization . 38
5.9 Array Generation . 39
5.10 Java Class File Representation by Java Classes 40

6 Experimental Evaluation . 43
6.1 Tested Examples . 43
6.2 Qualitative Results . 44
6.3 Quantitative Results . 44

7 Ongoing Research . 46
7.1 Features in Preparation . 46

7.1.1 Combination of Logic and Object-Oriented programming paradigms 47
7.1.2 Data Structure Generators . 47
7.1.3 Solver Improvements . 48

7.2 Future Work . 48

8 Conclusion . 49

References . 53

List of Figures
Figure 1: Muggl’s main GUI . 14
Figure 2: Parameter selection . 15
Figure 3: Editing an array’s values . 15
Figure 4: The windows that displays the log file . 17
Figure 5: Normal execution has been finished . 18
Figure 6: Symbolic execution window . 20
Figure 7: Symbolic execution windows reporting successful test case generation 21
Figure 8: The architecture of Muggl . 23
Figure 9: Step-by-step execution window for normal execution 30
Figure 10: Step-by-step execution window for symbolic execution 32
Figure 11: One tab of the options dialogue . 33
Figure 12: Editing class path entries . 34
Figure 13: Class file inspection window . 35
Figure 14: Class file inspection of a method’s definition . 35
Figure 15: Class file inspection of the constant pool . 36
Figure 16: UML class diagram for de.wwu.muggl.vm.classfile 41
Figure 17: UML class diagram for de.wwu.muggl.vm.classfile.structures 41
Figure 18: UML class diagram for de.wwu.muggl.vm.classfile.structures.attributes 42
Figure 19: UML class diagram for de.wwu.muggl.vm.classfile.structures.constants . 43

List of Tables
Table 1: Types supported by the JVM . 6
Table 2: Type-sensitive bytecode instructions . 12
Table 3: Experimental results for test case generation and elimination. 45
Table 4: Additional experimental results . 46

List of Listings
Figure 1: Basic struct of a Java class file . 8
Figure 2: Basic struct of the code attribute of a Java class file 9
Figure 3: Main loop of the JVM . 10
Figure 4: Frame execution loop of the JVM . 10
Figure 5: Muggl’s instruction interface . 11
Figure 6: Simple symbolic execution example . 17
Figure 7: Symbolic execution example with conditional jump 19
Figure 8: Symbolic execution example with a choice that is no real choice 22
Figure 9: Example of a test case file generated by Muggl 24
Figure 10: Binary search in Java . 26
Figure 11: Bytecode for binary search—part 1 (initialization) 26
Figure 12: Bytecode for binary search—part 2 (while body) 27
Figure 13: Unpropitious loop . 28
Figure 14: Java memory puzzle . 29
Figure 15: Bytecode for JavaMemoryPuzzle . 29
Figure 16: Java memory puzzle solution . 30
Figure 17: Java memory puzzle solution—our simple version 30

Working Paper Sketch

Type

Research Report

Title

Muggl: The Muenster Generator of Glass-box Test Cases.

Authors

Tim A. Majchrzak is a research associate at the Department of Information Systems of the Uni-
versity of Münster. Herbert Kuchen is a Full Professor at the Department of Information Systems
and Chair of Practical Computer Science.

For inquiries, please contact Tim A. Majchrzak (tima@ercis.de).

Abstract

Testing is a task that requires much effort, yet it is essential for developing software. Automated
test case generation (TCG) promises to relieve humans of manual work. We introduce Muggl
(the Muenster generator of glass-box test cases), which is developed at our institute. Muggl
generates test cases for Java bytecode. It symbolically executes code and uses constraint solving
techniques. While papers on Muggl have already been published, no comprehensive introduction
of the tool exist. This working paper fills this gap.

Keywords

software test, testing, test case generation, TCG, test automation, test tool

Related Work 3 �

1 Introduction

Software testing requires much effort. Despite innovations with regard to testing techniques, it
still is mainly a manual task [21]. It is particularity time-consuming if a high code-coverage is to
be reached. At the same time, testing is an essential task when developing software. Without
software tests, it is almost impossible to achieve the desired level of quality. An approach towards
relieving humans of manually designing test cases is automated test case generation (TCG). TCG
tools promise to generate tests with no or little intervention by testers.

In this working paper, we introduce Muggl. The Muenster generator of glass-box test cases has
been used in papers already [19, 20], but it has not been comprehensively described, yet. We in-
tend to fill this gap by describing Muggl’s main working principles and basic features. Furthermore,
we explain advanced functions and present results from experimental evaluation. Additionally, fu-
ture research is sketched.

Muggl is based on GlassTT [24] which was designed at the European Research Center for In-
formation Systems (ERCIS). Since some design principles were changed, Muggl was rewritten
from scratch. However, it incorporates the constraint solver developed for GlassTT [15]. Much
effort and knowledge has been put into designing Muggl. As of February 2011, it consists of 528
classes with 3 234 methods, 68 interfaces, and 44 436 lines of code (LOC) (excluding comments)
in 2,67 MiB of source code. Moreover, a documentation of 1 250 HTML files with a total size of
over 20 MiB has been prepared.

This paper is organized as follow. Section 2 discusses work related to Muggl. An introduction into
the Java Virtual Machine (JVM) is given in Section 3. In Section 4 the basic principles of Muggl and
its architecture are described. Section 5 introduces the distinct features of the tool. Experimental
results are compiled in Section 6. Section 7 highlights ongoing research and Section 8 draws a
conclusion.

2 Related Work

For reasons of scope, we will neither discuss the history of automated testing nor only loosely
related approaches in the paper but focus on comparable approaches that have recently been
published. Using symbolic execution for TCG is no new approach (cf. e.g. [12]). Symbolic
execution even is discussed in textbooks on testing such as [16, 33].

Mostly older work that relates to Muggl is discussed in the papers on its predecessor [24, 23, 15].
A general overview of automated test case generation is given in [28] and [7]. Work that relates
to Muggl’s strategies for elimination of redundant test cases is discussed in [19].

Five approaches are particularly notable and can be compared to Muggl:

� DOYLE and MEUDEC describe IBIS [6]. It uses symbolic execution of Java bytecode in com-
bination with constraint solving. IBIS internally works with a Prolog representation of class files.
However, the constraint solver is an external component. IBIS is not finished; it does not even
cover the full set of bytecode instructions. Unfortunately, no progress has been reported in the
recent years.

� FISCHER and KUCHEN have developed a tool for testing functional logic programs (in particular
for Curry) [9, 10]. It is very similar in concept to Muggl. There is a number of differences due
to the hardly compatible programming paradigms, though. For example, Muggl has to cope with
data structures such as arrays and objects, which do not even exist in Curry. Moreover, FISCHER

� 4 The Java Virtual Machine

and KUCHEN do not currently include a constraint solver. Nevertheless, their approach is very
interesting since it underlines the general feasibility of our (and their) approach.

� Pex [30, 11, 31] has been developed by Microsoft research. It is a TCG tool for .NET-based
programs. Despite some different ideas of handling specialties that differ between Java and .NET,
and despite being based on path-bounded model checking, Pex is closely related to Muggl. How-
ever, it does not use an own virtual machine but instruments the .NET profiling API. Its constraint
solver Z3 [4] is different in concept to Muggl’s solver. It is a satisfiability modulo theory (SMT)
solver which natively supports data structures such as arrays. Research on Pex is ongoing.

� Symstra [36] pursues simple ideas as Muggl. However, its techniques resemble symbolic model
checking.

� ATGen [22] is a TCG tool for Ada. Despite some similarities, it does not have sophisticated
features such as coverage tracking.

3 The Java Virtual Machine

Muggl implements the Java Virtual Machine (JVM) specifications and provides a normal (i.e. non-
symbolic) JVM that is extended by symbolic execution. Therefore, the JVM is briefly introduced.
The reader is supposed to be roughly familiar with the Java programming language [2] and the
Java Runtime Environment (JRE). The following summary is based on Oracle’s specification [17].1

3.1 Basic Concepts

The JVM has been built to execute Java code. A number of concepts have been built into it [17,
Chapter 2]. The most important concepts are:

� The JVM is an abstract computing machine that serves ample purposes. It provides multi-
threading.

� Whereas Java code by concept is platform-independent, platform-dependent version of the
JVM exist. The JVM is the interface between Java bytecode execution and hardware and opera-
tion system.

� The JVM executes bytecode. It does not necessarily have to be compiled from Java code.
Many other programming languages can be compiled to class files, which are executed by the
JVM.

� Bytecode is verified before run by the JVM.

� It natively supports Unicode for string representation.

� The JVM enforces strong typing (see Section 3.2).

� A number of special classes are provided that are handled differently than other classes. This
includes java.lang.Object, the root class, and java.lang.String, which is cached by the JVM.

� Several different forms of variables are provided by the JVM: static class variables, instance

1To be precise, the specification was released by Sun before it was acquired by Oracle.

Data Types 5 �

variables (members), array components, method parameters, constructor parameters, exception-
handler parameters, and local variables.

� Virtual invocation is supported. The method to be invoked is determined at runtime.

� Methods can be overloaded.

� Objects are instantiated by using a constructor. A constructor is compiled to a method with a
special signature.

� Interfaces and abstract methods are supported. A class might have multiple interfaces but only
single inheritance is supported.

� Classes and interfaces can be nested, i.e. inner classes are supported.

� Arrays of any type are supported. Arrays can be multidimensional.

� The JVM provides automatic memory management.

� Exceptions can be used to interrupt the normal control flow. They are passed from the invoked
method to the invoking method until the affected code is surrounded by a try-catch block of the
appropriate exception type. Caught exceptions are handled by the exception handler. All excep-
tions inherit type java.lang.Throwable. java.lang.Error and java.lang.RuntimeException
are unchecked, i.e. they do not need to be added to a method’s signature even if they might be
thrown. Any other exception of type java.lang.Exception or one of its subclasses has to be
checked and thus declared by the method’s signature. Exception handling is an important func-
tion of the JVM. For reasons of brevity, it is not further discussed here. For details please refer to
[17, Chapter 2.16].

Besides these concepts, the JVM makes assumptions with regard to data types, class file format,
memory abstraction and execution. They are discussed in the following sections.

3.2 Data Types

Java is statically typed. Type conversions are explicit; for primitive types, conversion instructions
exist. Reference types have to be casted. Even though Java supports automatic (un-) boxing
of classes that wrap primitive types (such as java.lang.Integer for int), this is compiled to an
explicit operation in Java bytecode.

The types supported by the JVM are compiled in Table 1. The prefix is used for type-specific
bytecode instructions (see Section 3.6).

All types can be explicitly used but the return address. It is only internally used by instructions
for exception handling. Boolean types are not supported by bytecode instructions; values of type
boolean can be generated, but working with them is done with instructions for type int. While
casting to byte, char, and short is included as narrowing instructions, calculations with these
values are done using the corresponding instructions for integers.

Additional details on typing and conversions is given in chapters 2.4ff. and 3.2ff. of the JVM
specification [17].

2The actual memory utilization of many types is higher.

� 6 Architecture and Memory Abstraction

type format length2 bytecode prefix initial value
boolean Boolean value 1 z false
byte signed integer 8 b (byte) 0
char Unicode sign 16 c \u0000
double IEEE754 float 64 d 0.0
flout IEEE754 float 32 f 0.0f
int signed integer 32 i 0
long signed integer 64 l 0L
reference reference pointer 32 a null
return address address pointer 32 a (no default)
short signed integer 16 s (short) 0

Table 1: Types supported by the JVM

3.3 Architecture and Memory Abstraction

Implementing a JVM requires to be able to read class files and to execute them in accordance
with the specification. Many other details are left to the developer’s discretion, e.g. the garbage
collection algorithm used and runtime optimizations applied.

The JVM is an abstract machine that basically can be implemented on any architecture. It reads
class files and executes bytecode instructions on the hardware it runs on. Main components are
the class loader, the verifier, and the execution unit. Class loading and verification are important
parts of executing Java bytecode. Verification is particularly important for the JVM since class
files can originate from untrusted sources. Runtime problems known from other programming
languages such as buffer overflows or dangling pointers [8] cannot happen in the VM. Problems
that might occur when executing instructions are either explicitly declared as exceptions that might
be thrown or avoided by verifying class files. Linking is done dynamically; in particular, classes
are loaded at runtime when they are needed. Loading classes can be done from several sources,
i.e. directories and jar archives. The execution unit relies on classes provided by the class loader
and checked by the verifier. It is the virtual processor of the JVM and described in Section 3.5.

The following runtime data areas are used by the JVM:

� pc register
For each thread executed in the JVM, the pc register contains the address of the instruction
currently being executed. The address equals the offset into the byte array of instructions (cf.
Section 3.6).

� JVM stacks
The JVM is a stack-based machine. Each thread has a JVM stack on which so called frames are
stored. Frame are top level units of execution and wrap methods currently executed.

� Heap
The heap of the JVM is shared by all threads executed in it. Any objects created during execution
are stored on the heap. They can be accessed by their reference value. Memory management of
the heap is not specified by the JVM. However, objects no longer in use have to be taken care of.
In general, this is done by using a garbage collection algorithm which is invoked cyclically.

� Method area
The method area is created at JVM startup and shared among threads. It contains data from
loaded classes such as the runtime constant pool and additional structures required during exe-
cution.

Class Files 7 �

� Runtime constant pool
Each class loaded into the JVM has a constant pool of its own. Constant pools comprise constant
values used by this class, for example in invoking methods or as strings required during execution
(to initialize objects of type java.lang.String). Class constant pools are loaded into the runtime
constant pool.

� Native method stacks
Not all methods executed by the JVM are implemented in Java. Some are written in languages
which are compiled to code native to the machine the JVM runs on. In order to execute them and
to get results from these methods, native method stacks are used.

Moreover, each thread has a memory area of its own and can be referenced by a thread number.
While the JVM specification strictly dictates the layout of some data areas and other conventions
such as floating point arithmetics, it is relatively vague on other issues of implementation. For
example, no particular internal structure for objects is mandated.

For actual execution, the JVM uses so called frames which are stored on the JVM stacks. A
frame stores data and partial results, and it is used to perform dynamic linking and to handle
exceptions. With each method invoked, a new frame is generated. A frame comprises of the
following components:

� Local variables
Each frame comprises an array of local variables. The maximum number of local variables is
determined statically. Local variables are used to access method parameters (arguments) and
to store intermediary results. Values of type long and type double occupy two consecutive local
variables for historic reasons. All other values (including references) occupy one local variable.

� Operand stack
Each frame uses an operand stack on its own. All instructions that perform calculations use the
operand stack, i.e. operations are not directly performed on local variables. Instead, variables
are loaded onto the stack and the calculation is performed. Then, another calculation follows
until either the topmost element of the stack is returned and execution of the frame finishes or an
elements is stored into a local variable.

3.4 Class Files

A Java class file is a stream of 8 bit bytes. Data is saved as 8 bit (u1), 16 bit (u2), 32 bit (u4), or
64 bit unsigned integers which are constructed by reading in one byte respectively two, four, or
eight consecutive bytes. Data items with more than on byte are stored in big-endian order (with
the high bytes first) [17, Chapter 4]. The class file has to be read sequentially; random access is
impossible since information on the length of blocks of associated data is usually part of this data.
The basic struct (similar to C notation) is shown in Listing 1.

In general, class files have a tree-like structure. Variable areas contain data of fixed length and
might contain additional data of variable length, thus branching further. The tree structure can
also be observed in Muggl’s class representation of Java classes (see Section 5.10).

The main elements of a class files can be described as follows. Entries are in the same order as
encountered in the files.

1. Each file begins with the magic word 0xCAFEBABE.

2. Two 32 bit values describe the version number of the class. It is the required version of the
virtual machine; it is not a number set at the programmer’s discretion but inserted by the compiler.

� 8 Class Files

1 ClassF i le {
2 u4 magic ;
3 u2 minor_vers ion ;
4 u2 major_vers ion ;
5 u2 constant_pool_count ;
6 cp_ in fo constant_pool [constant_pool_count −1];
7 u2 access_f lags ;
8 u2 t h i s _ c l a s s ;
9 u2 super_class ;

10 u2 in te r faces_coun t ;
11 u2 i n t e r f a c e s [i n te r faces_coun t] ;
12 u2 f i e l d s _ c o u n t ;
13 f i e l d _ i n f o f i e l d s [f i e l d s _ c o u n t] ;
14 u2 methods_count ;
15 method_info methods [methods_count] ;
16 u2 a t t r i b u t e s _ c o u n t ;
17 a t t r i b u t e _ i n f o a t t r i b u t e s [a t t r i b u t e s _ c o u n t] ;
18 }

Listing 1: Basic struct of a Java class file [17, Chapter 4]

3. The constant pool contains string constants, class and interface names, field names, and other
constants.

4. Access flags are bit values that denominate flags of the class such as the modifiers (public,
protected, and private) and whether the class is an interface or abstract.

5. this_class is an entry into the constant pool denoting the name of the class.

6. super_class is an entry into the constant pool denoting the super class’ name of the class, if
any. A super class is a class this class inherits from.

7. There can be a variable number of interfaces. Each interface is denoted by an index into the
constant pool that gives its name.

8. Fields, i.e. members, and methods are given in structures of their own.

9. Each class can have a number of arguments which are given by the attribute_info structure.

Due to their importance, some structures have to be described with more detail. A comprehensive
list of their structs and characteristics is given in chapter 4 of the JVM specification [17].

� Constant pool
The constant pool has a number of entries that denote class and interface names, method names
and identifiers, values of numerical variables used during execution, and data of strings used
during execution. All of them but CONSTANT_Utf8_info reference other constant pool entries.
Ultimately, entries of structure CONSTANT_Utf8_info are references by all constant pool entries
since they contain actual literal sequences.

� Fields
Fields are described by access flags, a name, a descriptor, and attributes.

� Methods
Methods are described by access flags, a name, a descriptor, and attributes. Bytecode instruc-
tions are encapsulated by an own attribute. Descriptors are used to denote parameter types and
return types.

There is a high number of attribute structures. Attributes for example comprise information on in-

Instruction Set 9 �

ner classes, tables to link bytecode instructions to line number in source code, and information on
local variables that are used in frames. The most notable attribute contains the code of methods.
Its struct is given in Listing 2.

1 Code_at t r ibu te {
2 u2 at t r ibute_name_index ;
3 u4 a t t r i b u t e _ l e n g t h ;
4 u2 max_stack ;
5 u2 max_locals ;
6 u4 code_length ;
7 u1 code [code_length] ;
8 u2 excep t ion_ tab le_ leng th ;
9 { u2 s ta r t _pc ;

10 u2 end_pc ;
11 u2 handler_pc ;
12 u2 catch_type ;
13 } excep t ion_ tab le [excep t ion_ tab le_ leng th] ;
14 u2 a t t r i b u t e s _ c o u n t ;
15 a t t r i b u t e _ i n f o a t t r i b u t e s [a t t r i b u t e s _ c o u n t] ;
16 }

Listing 2: Basic struct of the code attribute of a Java class file [17, Chapter 4]

The attribute comprises data on the maximum number of stack entries and the maximum number
of local variables needed, and the bytecode instructions given as a sequence of up to 216 bytes.
Additionally, it can contain an exception table structure that is used for handling exceptions. It
represents what try-catch and finally indicate in source code. Finally, the attribute might have
nested attributes.

3.5 Execution Unit

The execution unit controls execution and manages access to the data area. The basic processing
can best be explained with pseudo code (Listing 3). The pseudo code has a Java like notation
rather than a more abstract one. Simply speaking, frames are popped from the JVM stack until it
is empty or only a return value is left on it. A frame is pushed onto the JVM frame when a method
is invoked.

Executing a frame can be described in a similar style (Listing 4). The frame execution is a nested
loop of the main JVM loop. executeInstruction() leads to the execution of the instruction.
Simply speaking, the loop moves from instruction to instruction either by incrementing the pc or
by explicit jumps and executes the instructions. This is continued until either a return instruc-
tion was executed or an uncaught exception was thrown. Execution in low level programming
languages could be realized as a large switch statement that has an entry for each bytecode in-
struction. In high level programming languages (and in Muggl), it is possible to have an interface
Instruction, which is implemented by each instruction. Executing an instruction leads to a call
of Instruction.execute(). As an example, Muggl’s interface for instructions is given in Listing 5
(comments have been omitted).

The illustrations in this section is simplified. More details on the execution unit are given in several
chapters of the JVM specification, namely chapters 2.17, 3, 5, and 8 [17].

3.6 Instruction Set

The instructions of a method in a Java class are described by an array of byte values. Each
instruction is denominated by a one byte value, i.e. there are 256 possible instructions. However,

� 10 Instruction Set

1 void mainLoop () {
2 Frame frame ;
3 i n t pc ;
4 while (! JVM_Stack . isEmpty ()) {
5 Object ob jec t = JVM_Stack . pop () ;
6 / / Check the type .
7 i f (! (ob jec t instanceof Frame)) {
8 / / I t might be the l a s t ob jec t .
9 i f (JVM_Stack . isEmpty ()) {

10 / / I t i s the r e t u r n value o f the a p p l i c a t i o n − end execut ion .
11 f i n i s h E x e c u t i o n (ob jec t) ;
12 return ;
13 }
14 / / Push the value to the c u r r e n t l y executed frame .
15 frame = (Frame) th is . s tack . pop () ;
16 frame . getOperandStack () . push (ob jec t) ;
17 } else {
18 / / Continue execut ion wi th the popped frame .
19 frame = (Frame) ob jec t ;
20 }
21

22 pc = frame . getPc () ;
23 executeFrame (frame) ;
24 }
25 }

Listing 3: Main loop of the JVM

1 / / t h i s . pc denotes the pc of the JVM.
2 void frameLoop (Frame frame)
3 Method method = frame . getMethod () ;
4 I n s t r u c t i o n [] i n s t r u c t i o n s = method . ge t Ins t ruc t ionsAndOtherBy tes () ;
5

6 / / Ac t i va te the frame .
7 frame . se tAc t i ve (true) ;
8 while (frame . i s A c t i v e ()) {
9 / / Save the pc .

10 i n t pc = th is . pc ;
11

12 / / Execute the i n s t r u c t i o n .
13 e x e c u t e I n s t r u c t i o n (i n s t r u c t i o n s [pc]) ;
14

15 / / Jumped too f a r ? pc cannot over f low but when i t exceeds 65535 , count ing
cont inues a t 0 .

16 i f (th is . pc >= L i m i t a t i o n s .MAX_CODE_LENGTH) {
17 th is . pc −= L i m i t a t i o n s .MAX_CODE_LENGTH;
18 }
19

20 / / Increment pc to the next i n s t r u c t i o n ’ s o f f s e t i f no jump has been made .
21 i f (th is . pc == pc) {
22 th is . pc += 1 + i n s t r u c t i o n s [pc] . getNumberOfOtherBytes () ;
23 }
24

25 / / Check i f a r e t u r n i n s t r u c t i o n has been executed .
26 i f (th is . re turnFromCurrentExecut ion) {
27 return ;
28 }
29 }
30 }

Listing 4: Frame execution loop of the JVM

with 205 instructions in existence, not all possible numbers are used. Of these 205 instructions,
not all are compiled to class files and one is reserved but not used (anymore). Each instructions
might have a fixed or variable number of other bytes that further specify it. This number can only
be determined by sequentially reading the array of instructions.

Instruction Set 11 �

1 public inter face I n s t r u c t i o n {
2

3 void execute (Frame frame) throws Execut ionExcept ion ;
4

5 void executeSymbol ica l ly (Frame frame) throws Execut ionExcept ion ;
6

7 S t r i n g getName () ;
8

9 S t r i n g getNameWithOtherBytes () ;
10

11 i n t getNumberOfOtherBytes () ;
12

13 }

Listing 5: Muggl’s instruction interface

Since the JVM is a stack-based machine, most instruction do not have additional bytes. Most of
them expect one or more values they require for computation to be on the operand stack. There-
fore, these instructions do not need additional bytes like they would do on a register machine.
Typical examples are arithmetic operators, which do not have additional bytes.

There are several ways to structure the instructions. The first distinction made in the working
paper is by type sensibility. A great number of instructions regard types while the remaining
instructions are general ones. Typed instructions are compiled in Table 2. The instructions to load
and store local variables also exists in variants that do not have an additional byte specifying the
local variable number. The variable number is inherent to them. This concerns the instructions
dload_0, dload_1, dload_2, dload_3, fload_0, fload_1, fload_2, fload_3, iload_0, iload_1,
iload_2, iload_3, lload_0, lload_1, lload_2, lload_3, aload_0, aload_1, aload_2, aload_3,
dstore_0, dstore_1, dstore_2, dstore_3, fstore_0, fstore_1, fstore_2, fstore_3, istore_0,
istore_1, istore_2, istore_3, lstore_0, lstore_1, lstore_2, lstore_3, astore_0, astore_1,
astore_2, and astore_3. Unsurprisingly, they load and store variables from position 0, 1, 2 or 3
instead of using position specified by an additional byte.

Most instructions are self-explanatory by their category. Some of them require further explanation:

� Whereas xconst for numeric types pushes numeric values, aconst_null is used to push null.

� bipush and sipush are used to push values of type byte and short.

� iinc directly increments an variable of type int.

� Long comparison (lcmp) pushes an int value of 0, 1, or −1 onto the stack if the first considered
value is equal, greater, or less than the second considered value.

� The corresponding instructions for floating point numbers (dcmpl, dcmpg, fcmpl, and fcmpg)
work similarly but also take NaN (not a number—a special float value) into consideration.

� if_xcmpOP is based on the comparison of two values popped from the operand stack, whereas
ifOP compares a value to zero in case of ifeq, ifne, iflt, ifge, ifgt, and ifle and to null in
case of ifnull and ifnonnull.

Besides these type-sensitive instructions, further instructions can be categorized as follows:

� Fetching literals from the constant pool: ldc, ldc_w, and ldc2_w.

� Popping, duplicating, and swapping elements from the operand stack: pop, pop2, dup, dup_x1,
dup_x2, dup2, dup2_x1, dup2_x2, and swap.

� 12 Instruction Set

category opcode byte char double float int long short reference
dconst_0 fconst_0 iconst_0 lconst_0 aconst_null
dconst_1 fconst_1 iconst_1 lconst_1

iconst_2
iconst_3
iconst_4

xconst

iconst_5
iconst_m1

push constants

x ipush bipush sipush
x load dload fload iload lload aloadload and store

to local variable xstore dstore fstore istore lstore astore
xaload baload caload daload faload iaload laload saload aaloadload and store

from array xastore bastore castore dastore fastore iastore lastore sastore aastore
incrementation x inc iinc

xadd dadd fadd iadd ladd
xdiv ddiv fdiv idiv ldiv
xmul dmul fmul imul lmul
xrem drem frem irem lrem
xneg dneg fneg ineg lneg

arithmetic
operations

xsub dsub fsub isub lsub
xshl ishl lshl
xshr ishr lshrbit shifting
xushr iushr lushr
xand iand land
xor ior lorlogic operations
xxor ixor lxor
xcmp lcmp
xcmpl dcmpl fcmpllong and float

comparison xcmpg dcmpg fcmpg
d2x d2f d2i d2l
f2x f2d f2i f2l
i2x i2b i2c i2d i2f i2l i2sconversion

l2x l2d l2f l2i
if_icmpeq if_acmpeq
if_icmpne if_acmpne
if_icmplt
if_icmpge
if_icmpgt

if_xcmpOP

if_icmple
ifeq ifnull
ifne ifnonnull
iflt
ifge
ifgt

conditional
jumps

ifOP

ifle
return from me-
thod invocation

xreturn dreturn freturn return lreturn areturn

Table 2: Type-sensitive bytecode instructions

� Switches: tableswitch and lookupswitch.

� Return from method with void return type: return.

� Field access: getstatic, pustatic, getfield, and putfield.

� Method invocation: invokevirtual, invokespecial, invokestatic, invokeinterface, and
invokedynamic.

Execution Principles 13 �

� Object initialization: new.

� Array initialization: anewarray, newarray, and multianewarray.

� Unconditional jump: goto and goto_w.

� Checking reference types: checkcast and instanceof.

� Synchronization: monitorenter and monitorexit.

� Widened access to other instructions: wide.

� Explicitly throwing an exception: athrow.

� Getting an array’s length: arraylength.

� Instructions for the implementation of finally: jsr, jsr_w, and ret.

� Doing nothing: nop.

� Unused opcode: xxxunusedxxx. This opcode is not used for historic reasons.

� Reserved for debugging: breakpoint, impdep1, and impdep2. These instructions should not
be compiled to Java class files. They are e.g. used by debuggers.

Information in executing each instruction and on exceptions that it might throw is compiled in [17,
Chapter 6].

4 Muggl Basics

Firstly, Muggl’s execution principles will be introduced. We then explain the basics of symbolic
execution and constraint solving. Finally, the architecture is sketched and an execution example
is given.

4.1 Execution Principles

Instead of compiling and executing source code, Muggl utilizes class files consisting of Java
bytecode [17]. In Order to execute class files, Muggl has a Java virtual machine (JVM) of its own.
It generally follows the specification (as sketched in Section 3) but does not implement some of the
requirements. Most notably, this applies to threading. Muggl adheres to the Java 1.4 specification
and also implements most of the additions that were made to the language with the 1.5 and 1.6
releases.

There are two main advantages of using bytecode instead of source code. Firstly, compiler op-
timizations are taken into account. Secondly, a high number of languages besides Java can be
compiled to Java bytecode and thus executed. Muggl implements the full set of 205 instructions
and hence is capable of executing all programs compiled for the JVM.

Whilst Muggl does not need its graphical user interface (GUI) to be utilized, it is the most con-
venient way to use it. When launching Muggl, the file section windows shows up (Figure 1). Its
main purpose is to set up execution. On the left hand side, either a directory or a so called jar

� 14 Execution Principles

file can be selected. The latter is an archive that stores several class files as an library. It might
also be compressed. jar files and derived formats (such as war and ear) are the common way
to distribute Java programs. Muggl is capable of browsing jar files to locate class files stored
in their internal structure. This integration is seamless; users can browse them as if they were
directories.

Figure 1: Muggl’s main GUI

Once the desired directory is found, a listing of class files appears in the middle of the window.
Selecting a class file shows its methods on the right hand side. It also is possible to inspect the
internal structure of the class file, which is interesting for debugging. Class file inspection with
Muggl is explained in Section 5.4. If class files are changed while working with Muggl, they have
to be reloaded with the “Refresh class” button since Muggl’s class loader (see Section 4.5) caches
class files. This is done both for performance reasons, and to adhere to the specification [17].

The method list by default does not list constructors and static constructors. In terms of class
file representation, they have the method names <init> and <clinit>. Constructors are used
to construct objects and are explicitly invoked on object initialization. Static constructors initialize
static fields of classes and may even contain further code. They are automatically executed by
the JVM when a class is loaded for the first time. Methods in Java can have four levels of visibility
[17]: public, protected, default i.e. package visible, and private. Since Muggl allows single
methods to be executed, it by defaults lists all methods of a class regardless of their visibility
modifier. However, it can be selected to only display methods with signature public static
void main(String...args). The reference implementation of the JVM by Oracle allows only
such methods as entry points of Java programs.

In the lower right area, the windows offers the possibility to further set up execution. The only way
to provide parameters to a program executed in the official JVM is to supply String arguments

Execution Principles 15 �

to the main methods (or the null reference).3 Since Muggl can execute arbitrary methods, the
parameters expected by a method have to be provided explicitly. Otherwise, execution fails if the
executed methods tries to access the respective parameter. Muggl offers the parameter selec-
tion windows for this purpose (Figure 2). Parameters of primitive types, their respective wrapper
objects (of types such as java.lang.Integer or java.lang.Double), and strings can be set.
For objects, null can be set. Alternatively, a loader object can be provided which instantiates
the object provided to the methods. The latter feature is not yet finished and currently disabled.
Any parameter can be set to be undefined as well, which is important for symbolic execution as
explained in the next section.

If a parameter is set to be undefined, which also is the default setting, accessing it by a load
instruction will halt Muggl’s JVM with an de.wwu.muggl.vm.execution.ExecutionException be-
ing thrown. This is an internal exception type of Muggl; it is processed by Muggl and not thrown
within the executed program. The exception indicates that a state was encountered which is not
defined. In Java, all variables have default values. However, the JVM specification does not de-
scribe arbitrary method invocation without supplying arguments. In fact, doing this would lead to
a prior exception because the calling method is expected to have at least as many elements on
its operand stack as the invoked method expects as arguments.

Figure 2: Parameter selection

Muggl also provides functionality to set up arrays passed to methods (Figure 3). It can create
and modify arrays of arbitrary types. Arrays values can be set for primitive types, their wrapper
classes, and for strings. For arrays of other objects, elements can be set to null. In the future, it
will also be possible to instantiate distinct objects.

Figure 3: Editing an array’s values

Besides constant parameters, so called generators and validators can be defined. Both are ex-
perimental features currently in preparation (see Section 7.1).

3Of course, programs accept further input during execution, e.g. through reading files, by receiving input from the
console, from network access, or from interaction in GUI windows.

� 16 Execution Principles

Finally, the execution mode can be chosen. “Normal” execution describes the standard behavior
of the JVM as defined by the specification. “Symbolic” enables symbolic execution as described
in the following section. The “Logical” mode is similar to the symbolic one but optimized for
execution of programs that combine Java with logic programming. This work is an experimental
feature mentioned in Section 7.1.1. Furthermore, “single steps” can be selected to enable Muggl’s
step-by-step execution and debugging mode. It is described in Section 5.2.

The menu offers access to the option dialogue, which is described in Section 5.3. Furthermore,
it offers the possibility to set a logging level. Muggl uses the log4j framework, the Java standard
facility for logging. Log4j offers various logging levels (fatal, error, warn, info, debug, and trace),
which indicate a varying criticality of the logged event (cf. [14]). Muggl’s code makes extensive
usage of logging capabilities:

� Fatal is not used because such events indicate that the system could not recover. Even if
Muggl’s JVM crashes, Muggl recovers operation and can fork another JVM.

� Events of level error are only rarely reported. They indicate states of the JVM that were not
expected and in any case hint to flaws in Muggl’s implementation. If an error occurs, execution
in the JVM cannot be continued. The log file should be examined carefully in order to locate the
defect in Muggl.

� Warnings (level warn) are not as rare as errors. They are not encountered during normal exe-
cution, though. Warnings indicate missing implementation of features in Muggl or serious config-
uration problems. If Muggl logs a warning, it gracefully proceeds but results might be imprecise.
An example would be missing test cases. There are options that toggle Muggl’s behavior with
regard to logging warning. In some cases, the graceful behavior might be unwanted and instead
of it a halt desired.

� Events of level info are logged every now and then and are expected. Only notable events are
logged; typically, a few messages are logged per minute of program execution.

� Debug messages concern sub modules of Muggl that report their operation in detail. This log
level will produce a considerable amount of messages.

� Trace is the most verbose option. Muggl will even log the most subtle changes in its state. While
this log level is helpful for detailed debugging and understanding Muggl’s operation, it generates
MiBs of log files within a few seconds of execution.

Log files can either be viewed by directly opening the log file or by using Muggl’s log window
(Figure 4). Log messages are logged with a timestamp relative to Muggl’s start, the affected
thread, the log level, a category (such as general, execution, symbolic), and the log message.
Log files are numbered, i.e. existing log files are not overridden but each instance of Muggl writes
to a log file of its own.

If execution is started, the execution window appears (Figure 5). It reports execution’s progress. It
will also report any uncaught exception that has been thrown or the successful finish of execution.
Execution in the official JVM does not return any value (but an internal return code to the JVM).
If Muggl directly executes other methods than the main method, there might be a returned value.
Muggl will directly display it if it is a primitive type. Otherwise, it will use the returned object’s
toString() method to display the return value. Thereby, reasonable output can be given for most
returned objects.

Symbolic Execution 17 �

Figure 4: The windows that displays the log file

4.2 Symbolic Execution

To derive test cases, Muggl executes bytecode symbolically. Input parameters are not treated as
constants but used as logic variables [5, 3]. During symbolic computation, variables are bound to
terms. Terms are made up of constants, operation symbols (such as arithmetic operators), and
variables. Symbolic execution can be explained with a simple example. Consider Listing 6 which
is the bytecode for method int add(int a, int b). The column offset shows the bytecode in-
struction’s offset in the array of instructions. It is successive but contains “gaps” since several in-
structions consist of additional bytes (cf. with the JVM specification explainer earlier). The second
column denotes the bytecode instruction along with additional bytes. The third column represents
the corresponding statement in Java. Finally, the fourth column provides an explanation.

offset bytecode Java explanation
method invocation

00 iload_1 a Push int a onto the stack.
01 iload_2 b Push int b onto the stack.
02 iadd a+ b Add the two topmost int variables after popping

them from the stack and push the result.
03 ireturn return a+ b Pop the topmost int from the stack and return it.

Listing 6: Simple symbolic execution example

� 18 Symbolic Execution

Figure 5: Normal execution has been finished

Of course, symbolic execution will be more complex in realistic examples. Consider Listing 7 for
method int addOrSub(int a, int b), which adds some more complexity. A conditional jump is
taken with regard to a comparison of a and b.

Each time a conditional jump is encountered, Muggl creates a choice point. Along with the choice
point, it saves information about the expression that describes the choice taken. Moreover, a trail
is set up. Trails are a stack data structure (or, more general, a last-in-first-out structure). For each
instruction executed after creating the choice point, entries are pushed onto the trail that describe
the JVM state changes induced by that instruction. If another choice point is created, its trail is
used and a reference to the parent choice point is saved.

If a return instruction is executed and no more frames are on the JVM frame stack, execution
in the normal JVM would be finished. The same applies to an exception that is thrown without
being caught. For symbolic execution, this indicates that a solution has been found. Both the
expression that describes the returned value and the constraints build for the parameters are
saved. Execution, however, is not finished.

Muggl backtracks to the last choice point created. Backtracking describes the process of popping
elements from the trail and using the information stored in them to restore the state the JVM had at

Symbolic Execution 19 �

offset bytecode Java explanation
method invocation

00 iload_0 a Push int a onto the stack.
01 iload_1 b Push int b onto the stack.
02 if_icmpge 0 7 if (a < b) Jump to offset 09 if (a < b).
05 iload_0 a Push int a onto the stack.
06 iload_1 b Push int b onto the stack.
07 isub a− b Subtract the two topmost int variables after pop-

ping them from the stack and push the result.
08 ireturn return a− b Pop the topmost int from the stack and return it.
09 iload_0 a Push int a onto the stack.
10 iload_1 b Push int b onto the stack.
11 iadd a+ b Add the two topmost int variables after popping

them from the stack and push the result.
12 ireturn return a+ b Pop the topmost int from the stack and return it.

Listing 7: Symbolic execution example with conditional jump

the time of generating the choice point. The process can be seen as a kind of reversed execution.
Despite some computational effort from backtracking, using a trail is much more efficient than
saving the full virtual machine (VM) state for every choice point. In general, choice points are
generated very often and only tiny bits of the state space change between choice points. Saving
full states would be a waste of memory.

Once backtracking is finished, Muggl evaluates the negated constraint saved for the choice point.
If it can be satisfied, computation continues for the alternative branch of the conditional jump.
Otherwise, backtracking is continued to the parent choice point. Once a choice point has no
parent and further backtracking is started, the execution is known to be finished. All possible
states have been discovered. Test case generation can be started (see Section 4.4).

Symbolic execution forms a search tree; conditional jumps lead to branches. Muggl processes
the search tree depth-first. Using a breadth-first strategy would render the concept of using trails
almost useless, since keeping the state would require additional measurements. Besides the
above described choice point for conditional jumps, further choice points exist for situations in
that branches are inserted into the search tree. This can both reflect the behavior of instructions
(such as switch which has a variable number of edges) and artificial actions. The latter is for
example used to generate array values. Muggl does not treat arrays symbolically (but single array
values). Instead, it uses a so called array generator. This is reflected by using an adequate
choice point. On backtracking, it is checked whether more arrays can be created. If so, execution
continues with a new array. Otherwise, backtracking continues. The choice point interface and
Muggl’s search algorithm are flexible to process choice points for varying purposes.

Each path taken through the bytecode corresponds to a distinct test case. If you consider Listing 7,
two test cases would be generated. Writing them in a form < {p1 . . . pn}, r > with px parameters
and r the results from computation, yields < {a, b}|(a < b), (a−b) > and < {a, b}|(a ≥ b), (a+b) >.
With concrete values, the test cases could be < {2, 5},−3 > and < {4, 3}, 7 >.

For practical problems, the above described procedure becomes extremely complex. Even worse,
it is prone to run infinitely. Loops are compiled by using a conditional jump. If they have vari-
able boundaries, symbolic execution might continue endlessly. Therefore, Muggl employs a high
number of sophisticated techniques to keep the level of complexity low, to counter the so called
state-space explosion, and to speed up execution. Many of them are discussed in the remainder
of this article.

� 20 Symbolic Execution

Symbolic execution is run in the same windows that the concrete information is run in. However,
much more detailed information can be provided (see Figure 6). First of all, general execution
information are shown. This includes running time, number of executed frames and instructions,
and instantiated classes along with statistic calculations with these figures. Furthermore, data
with regard to the search algorithm and constraint solving is provided.

Figure 6: Symbolic execution window

If enabled, the window also shows data on code coverage. Moreover, the number of yet found
solutions can be observed. Finally, information on the time tracked for various operations is shown
along with its share of the total running time. Differences in shares of running time found for distinct
programs help to understand how test case generation works for them and where bottlenecks in
Muggl might reside. The window offers buttons to pause and abort execution, to set the delay
between refreshes, and to show the log file. Furthermore, Muggl can be minimized by clicking
“Run in background”. It appears as an icon in the task bar and reports end of execution by a
speech balloon (or similar means in accordance with the operating system).

After execution has been finished, the information so far provided in the window is frozen (see
Figure 7). It can be observed later. In the upper part, progress with test case elimination is
reported (as explained in Section 5.6). Finally, Muggl reports that it wrote a test case. The button
“Open test case file” is activated which directly launches an editor showing the JUnit test case.

Constraint Solving 21 �

Figure 7: Symbolic execution windows reporting successful test case generation

4.3 Constraint Solving

To be able to decide whether expressions are solvable, or not, Muggl uses a so called constraint
solver. Its merits can be illustrated by using an example. Consider Listing 8 which displays
the method int choice(int a). The method compares a to b and returns either a or −a in
accordance with the comparison’s result. Symbolic execution does not need to consider both
results, though. For semantic reasons, there is not really a choice: b is calculated as two times
a. Thus, (a < b + 5) will always be satisfied. Even (a < b) would always be satisfied. If a choice
point is created at the instruction with offset 08, the expression is checked by the constraint solver.
Since it can determine that (a >= b + 5) cannot be fulfilled, only the branch leading to offset 12
needs to be considered. In realistic examples, this dramatically reduces the number of states that
have to be explored.

Constraint solving is helpful even if the situation is not as obvious as in this example. Consider that
b would again be a parameter and would not be calculated as b = a ∗ 2. In this case, (a < b + 5)
would form a constraint that is used for further computation and that might help to decide on
expressions encountered at a later point of execution.

� 22 Test Case Generation

offset bytecode Java explanation
method invocation

00 iload_0 a Push int a onto the stack.
01 iconst_2 2 Push int 2 onto the stack.
02 imul a ∗ 2 Multiply the two topmost int variables after pop-

ping them from the stack and push the result.
03 istore_1 b = a ∗ 2 Pop the topmost int variable from the stack and

store it as local variable #1 (b).
04 iload_0 a Push int a onto the stack.
05 iload_1 b Push int b onto the stack.
06 iconst_5 5 Push int 5 onto the stack.
07 iadd b+ 5 Add the two topmost int variables after popping

them from the stack and push the result.
08 if_icmpge 0 5 if (a < b+ 5) Jump to offset 13 if (a < b+ 5).
11 iload_0 a Push int a onto the stack.
12 ireturn return a Pop the topmost int from the stack and return it.
13 iload_0 a Push int a onto the stack.
14 ineg −a Pop the topmost value from the stack, negate it,

and push it.
15 ireturn return −a Pop the topmost int from the stack and return it.

Listing 8: Symbolic execution example with a choice that is no real choice

Constraint solving becomes very complex for real problems. Instead of single linear constraints,
systems of arbitrary non-linear constraints are built during execution. Muggl’s constraint solver
[15] offers a variety of solving strategies and performs well for most problems. It offers the rep-
resentation of all primitive data types of Java. Both linear and non-linear constraints are solved.
Linear inequations are solved based on the Fourier-Motzkin algorithm; non-linear equations are
solved by search space bisection. A detailed discussion for the solver is out of scope of this
working paper, though.

4.4 Test Case Generation

After finishing symbolic execution, all solutions are committed to Muggl’s solution processor. The
processor serves two goals: Firstly, it eliminates redundant test cases. Secondly, it generates
JUnit test case files.

In general, test case generation should lead to a number of test cases that is as small as possible
while still being suitable to detect all defects of a program. A small number of test cases is easier to
check for humans, and it executes much faster. Two mechanisms are used to keep the number of
test cases small. The solution processor has a built-in redundancy checker. It deletes test cases
that are semantically equal. Due to unpropitious bounds, solutions with the same constraints
are created for some programs. The second mechanism eliminates test cases based on their
contribution to control-flow and data-flow coverage. It is described in Section 5.6.

Test case generation usually reduces the number of test cases dramatically. In typical examples,
the number of kept test cases is two magnitudes lower than the number of generated ones. For the
remaining test cases, Muggl generates a JUnit test case file. This test case file can be executed
directly in order to test the program under consideration.

An example is given in Listing 9. It has not been manually modified but for comments of the header
being shortened. This is denoted by “[. . .]”. All test case files written by Muggl have an explanation

Architecture 23 �

of how they have been generated and what the basic setting during test case generation were.
Each test case file is a class of its own. Directly following the class definitions, class members
are set up. They are used in the actual tests. Muggl writes variable names that hint to their value
whenever possible. By choosing class members, using constants in method bodies in avoided.
The setUp() method is used for further initialization. testIt() contains the actual tests. They
are designed as JUnit assertion. For a method call with specified parameters, the asserted result
is given. If actual and asserted result differ, the test fails. It is moreover possible to check for
exceptions. In this case, a try-catch block encloses a method call. catch does not contain any
code. However, directly following the method call is an explicit fail(String) which denominates
that the test has not been passed. Finally, the class contains a main method. It is useful if the test
case file is not executed by JUnit because it will invoke JUnit in order to be run.

While the resulting JUnit file has a clear structure, generating it requires a considerable amount
of code. All variables used require proper initialization. In particular, each variable of a distinct
value should only be defined once. Moreover, objects have to be initialized. Muggl is capable
of setting up code that initializes arrays and simple objects. It cannot create code that uses a
constructor and a variety of method calls to set up an object. This task can become arbitrarily
complex because how to construct an object has to be derived from the existing object when
saving a solution. No feasible solution how to do this is known. However, there are means of
circumventing this problem which will be dealt with in the ongoing research (cf. Section 7).

4.5 Architecture

An overview of Muggl’s architecture is given in Figure 8. Providing large class diagrams is not
helpful. With its total of 528 classes with 3 234 methods and 68 interfaces, even models of Muggl’s
subsystems are very large. A low-level view is only needed to extend Muggl or to use its com-
ponents in other projects. For this purpose, an extensive API documentation is provided that
describes every class and the interrelations between classes and packages.

Muggl Core

Bytecode class Files

Junit Test Cases

Solution
Processor

Control-Flow
Generator

Def-Use Chain
Generator

Constraint
Solver

Symbolic Virtual Machine

Bytecode
Parser

Native
Wrapper

Execution Core /
Memory Abstraction

Search Algorithm / Backtracker

Trail

Choice Point Generator

Muggl GUI

Options Class Inspector

Executer

Class Browser

Execution Set Up

Figure 8: The architecture of Muggl

� 24 Architecture

1 package t e s t . un i tTes t s ;
2

3 import org . j u n i t . Before ;
4 import org . j u n i t . Test ;
5 import s t a t i c org . j u n i t . Asser t . ∗ ;
6

7 /∗ ∗
8 ∗ This c lass has been generated by Muggl f o r the automated t e s t i n g o f method
9 ∗ t e s t . papers . Paper200809 . binSearch (i n t v , i n t [] a) .

10 ∗ [. . .]
11 ∗
12 ∗ The t o t a l number o f s o l u t i o n s found was 200. [. . .]
13 ∗ By e l i m i n a t i n g s o l u t i o n s [. . .] the t o t a l number o f s o l u t i o n s could be reduced by

197 to the f i n a l number o f 3 t e s t cases .
14 ∗
15 ∗ Covered def−use chains : 60 o f 60
16 ∗ Covered c o n t r o l graph edges : 43 of 48
17 ∗
18 ∗ This f i l e has been generated on Monday , 07 February , 2011 18:27.
19 ∗
20 ∗ @author Muggl 1.00 Alpha (unreleased)
21 ∗ /
22 public class TestClass2 {
23 / / F ie lds f o r t e s t parameters and expected r e t u r n values .
24 private i n t intm1 ;
25 private i n t i n t 0 ;
26 private i n t [] ar ray0 = { −1 ,1} ;
27 private i n t [] ar ray1 = { 0 } ;
28 private i n t [] ar ray2 = nul l ;
29

30 /∗ ∗
31 ∗ Set up the u n i t t e s t by i n i t i a l i z i n g the f i e l d s to the des i red values .
32 ∗ /
33 @Before public void setUp () {
34 th is . intm1 = −1;
35 th is . i n t 0 = 0;
36 }
37

38 /∗ ∗
39 ∗ Run the t e s t s on t e s t . papers . Paper200809 . binSearch (i n t v , i n t [] a) .
40 ∗ /
41 @Test public void t e s t I t () {
42 asser tEquals (
43 th is . intm1 , t e s t . papers . Paper200809 . binSearch (th is . i n t0 , th is . ar ray0)) ;
44 asser tEquals (
45 th is . i n t0 , t e s t . papers . Paper200809 . binSearch (th is . i n t0 , th is . ar ray1)) ;
46 t ry {
47 t e s t . papers . Paper200809 . binSearch (th is . i n t0 , th is . ar ray2) ;
48 f a i l (" Expected a java . lang . Nu l lPo in te rExcep t ion to be thrown . ") ;
49 } catch (java . lang . Nu l lPo in te rExcep t ion e) {
50 / / Do noth ing − t h i s i s what we expect to happen !
51 }
52 }
53

54 /∗ ∗
55 ∗ Invoke JUni t to run the u n i t t e s t s .
56 ∗ @param args Command l i n e arguments , which are ignored here . Just supply n u l l .
57 ∗ /
58 public s t a t i c void main (S t r i n g args []) {
59 org . j u n i t . runner . JUnitCore . main (" t e s t . un i tTes t s . TestClass2 ") ;
60 }
61

62 }

Listing 9: Example of a test case file generated by Muggl

Distinct Features 25 �

Muggl is separated into graphical user interface (GUI) and execution core. The execution core
also comprises the solver. While being embedded for performance reasons, it is possible to use
the solver as a component of its own.

The GUI’s components are discussed throughout this paper. It has been designed for seamless
work with Muggl but—from a technical standpoint—has no special features.4 The GUI is run in
a thread of its own to guarantee performance and to avoid that GUI problems (such as delayed
rendering) affect the execution core and vice versa.

Besides the symbolic JVM (SJVM), a number of additional components constitute the execution
core. Most notably, these are the solution processor, and components that generate and track
control-flow and data-flow. The JVM adheres to the JVM specification [17] and utilizes concepts
required by it. This for example comprises the bytecode parser including components to represent
class files, and the memory abstraction. Internally, it consists of the implementation of the byte-
code instructions, algorithms for dynamic binding, the exception handler, a String cache, and a
large number of auxiliary components. Moreover, a wrapper for native methods (cf. Section 5.7)
ensures executability of native methods.

If the JVM is switched to symbolic mode, it processes the symbolic implementations of bytecode
instructions. All components required for symbolic execution are invoked. Most notably, this is the
choice point generator which invokes the search algorithm. The latter comprises the functionality
to perform backtracking. Speaking of additional data structures, specifically the trail has to be
mentioned.5

Muggl’s architecture has been designed for modularity. Most components are interchangeable.
Key components provide interfaces that ensure adaptability. For example, all implementations of
virtual machines (such as the normal JVM, the symbolic, and the logic one) are inherited from an
abstract Java virtual machine. The search algorithm processes choice points; it does not need to
know what kind of choice point it actually handles. This focus on object-oriented design principles
and patterns does not only keep Muggl flexible, maintainable, and extensible but also greatly aids
the understanding of its source code.

4.6 Execution example

For clarity, a realistic example that Muggl can process is given. Listing 10 shows an implementa-
tion of binary search in Java. It is a simple and convenient implementation of the algorithm. If the
searched element is not found in the specified array,−1 is returned. Otherwise, the element’s posi-
tion is returned. No explicit exception is thrown if the second argument is null. Thus, invoking the
methods and providing it with a null instead of an array will result in an NullPointerException
being thrown on line 3.

The resulting bytecode along with execution information is shown in Listing 11 and 12. After
symbolic execution, three distinct test cases remain. The JUnit test case file shown in Listing 9
(p. 24) has been generated for this binary search algorithm.

5 Distinct Features

The described functionality of Muggl constitutes a considerable amount of its code already. How-
ever, Muggl has a number of distinct features that either significantly improve the results from

4Particularities, such as used for step-by-step processing, are built into Muggl’s core and merely visualized by the GUI.
5Strictly speaking, there is a number of trails—one per choice point.

� 26 Iterative-Deepening Depth-First Search

1 public s t a t i c i n t binSearch (i n t v , i n t [] a) {
2 i n t low = 0;
3 i n t up = a . leng th − 1;
4 while (low <= up) {
5 i n t mid = (low + up) / 2 ;
6 i f (v < a [mid]) {
7 up = mid − 1;
8 } else i f (v > a [mid]) {
9 low = mid + 1;

10 } else {
11 return mid ;
12 }
13 }
14 return −1;
15 }

Listing 10: Binary search in Java

offset bytecode Java explanation
method invocation

00 iconst_0 0 Push int 0 onto the stack.
01 istore_2 low = 0 Pop the topmost int variable from the stack and

store it as local variable #2 (low).
02 aload_1 a Push array a onto the stack.
03 arraylength a.length Pop the topmost array from the stack and get its

number of elements.
04 iconst_1 1 Push int 1 onto the stack.
05 isub a.length −1 Subtract the two topmost int variables after pop-

ping them from the stack and push the result.
06 istore_3 up = a.length −1 Pop the topmost int variable from the stack and

store it as local variable #3 (up).
07 goto 0 45 while Jump to offset 52.

Listing 11: Bytecode for binary search—part 1 (initialization)

symbolic execution or greatly enhance efficiency. Muggl would theoretically work without them,
but is improved by incorporating these features. They are described in the following sections.

5.1 Iterative-Deepening Depth-First Search

A depth-first search of the tree of possible paths through a bytecode program is preferred to a
breath-first attempt. Besides the much lower memory footprint, a number of solutions is found
much faster. Even though both search strategies yield the same solutions after full execution,
breath-first is no suitable approach in almost any case. Even for programs of low complexity,
full enumeration often is not possible or at least takes very long. Depth-first quickly reaches leaf
nodes in the search-tree. Consequently, solutions can be saved.

The problem depth-first search faces is that for some branches disadvantageous characteristics
can be observed during symbolic execution. Execution then spends much time discovering such
branches without finding solutions. Much execution time passes until a solution is found and the
branch left by backtracking; in unfortunate cases, no solution is found due to semantic restrictions,
which means that searching the branch was useless. While it is desirable to find all possible test
cases, TCG has to be fast for economic reasons. Therefore, a reasonable number of test cases
should be found within a small amount of time.

Iterative-Deepening Depth-First Search 27 �

10 iload_2 low Push int low onto the stack.
11 iload_3 up Push int up onto the stack.
12 iadd (low + up) Add the two topmost int variables after popping

them from the stack and push the result.
13 iconst_2 2 Push int 2 onto the stack.
14 idiv (low + up)/2 Divide the two topmost int variables after pop-

ping them from the stack and push the result.
15 istore 4 mid = (low + up)/2 Pop the topmost int variable from the stack and

store it as local variable #4 (mid).

17 iload_0 v Push int v onto the stack.
18 aload_1 a Push array a onto the stack.
19 iload 4 mid Push int mid onto the stack.
21 iaload a[mid] Pop the topmost int and array from the stack. Get

the element from the array as the position de-
noted by the int and push it.

22 if_icmpge 0 11 if (v < a[mid]) Jump to offset 33 if (v < a[mid]).

25 iload 4 mid Push int mid onto the stack.
27 iconst_1 −1 Push int −1 onto the stack.
28 isub mid - 1 Subtract the two topmost int variables after pop-

ping them from the stack and push the result.
29 istore_3 up = mid - 1 Pop the topmost int variable from the stack and

store it as local variable #3 (up).
30 goto 0 11 (end of while) Jump to offset 52.

33 iload_0 v Push int v onto the stack.
34 aload_1 a Push array a onto the stack.
35 iload 4 mid Push int mid onto the stack.
37 iaload a[mid] Pop the topmost int and array from the stack. Get

the element from the array as the position de-
noted by the int and push it.

38 if_icmplt 0 11 if (v > a[mid]) Jump to offset 49 if (v > a[mid])

41 iload 4 mid Push int mid onto the stack.
43 iconst_1 1 Push int 1 onto the stack.
44 iadd mid+ 1 Add the two topmost int variables after popping

them from the stack and push the result.
45 istore_2 low = mid+ 1 Pop the topmost int variable from the stack and

store it as local variable #2 (low).
46 goto 0 6 (end of while) Jump to offset 52.

49 iload 4 mid Push int mid onto the stack.
51 ireturn return mid Pop the topmost int from the stack and return it.

52 iload_2 low Push int up onto the stack.
53 iload_3 up Push int low onto the stack.
54 if_icmplt 255 212 if low <= up Jump to offset 10 if low <= up (while condition).

57 iconst_m1 −1 Push int −1 onto the stack.
58 ireturn return −1 Pop the topmost int from the stack and return it.

Listing 12: Bytecode for binary search—part 2 (while body)

� 28 Step-by-Step GUI

Muggl employs an iterative-deepening depth-first search algorithm. It basically follows the search
strategy of depth-first. Upon reaching a pre-defined search depth without encountering a leaf
node in the search tree, backtracking is activated. Once all nodes of the search-tree for the given
depth have been discovered, execution is restarted with an increased depth. This strategy is very
advantageous. In almost any case, a high number of solutions is found within a short time. Most
leafs are reached on a path with a small depth. At the same time, the approach is flexible: as long
as more execution time is desired by the user, execution continues.

Each node in the search tree has at least two children. The average number of children is near
to two, since choice points with more than two branches (such as switches) are rarely used.
Consequently, the number of states visited again when restarting execution is low. This even
applies to an increment of only 1—typically, the increment would be higher.

For simplification consider a search-tree in that each node has exactly two children; assume an
infinite depth. The number of nodes for a given depth n is 2n−1. For search depth x, the number
of nodes to discover is 2x − 1. Even with an increment of 1, the number of states that have to be
processed again is only 2n−1 − 1 which is less than half of the total states to discover.

Besides the search algorithm, Muggl has a module that keeps track of the execution of loops.
Consider a loop such as shown in Listing 13. If limit has a high value, much time is spent
executing the loop. In many cases, such behavior does not lead to additional test cases. Thus,
Muggl can be configured to force backtracking after a loop has been executed for a specified
amount of time. A value sufficient in practice is 200.

1 for (i n t i = 0 ; i < l i m i t ; i ++) {
2 / / Do something .
3 }

Listing 13: Unpropitious loop for high values of limit

5.2 Step-by-Step GUI

Muggl is a prototype. As long as it is not exclusively used in productive environments, it needs to
have debugging capabilities. Therefore, it provides a step-by-step GUI in that programs can be
executed while the JVM’s state is visualized. This GUI is not only helpful to debug Muggl. In fact,
it can be used to understand a program’s behavior both during normal and symbolic execution.
Furthermore, it greatly aids to understand how bytecode is processed. It thereby can be used
to debug programs. In particular, specialties in the characteristic behavior of the JVM can be
comprehended.

The merits of executing Java bytecode step by step can be motivated by using an example. You
can easily solve the “Java memory puzzle” announced on the Java specialist newsletter. The
puzzle is depicted in Listing 14.6 On Oracle’s JVM this will yield an OutOfMemoryError, which
cannot be explained from the source code. The program utilizes more than the available memory.
It would be guessed that the memory used for data would be freed before data2 is generated
since data is encapsulated and brackets to indicate that the variable is not accessed afterwards.

A look at the bytecode for public void f() reveals the problem (Listing 15). For both arrays, the
same local variable is used. Before the second array is stored to local variable #1 at offset 13, it
is created at offset 11. However, the first array is still stored as local variable #1 at this time and
thus not freed by garbage collection. To observe this, the step-by-step GUI is a very convenient
tool.

6The puzzle can be found at http://www.javaspecialists.eu/archive/Issue173.html

Step-by-Step GUI 29 �

1 public class JavaMemoryPuzzle {
2 private f i n a l i n t dataSize =
3 (i n t) (Runtime . getRuntime () . maxMemory () ∗ 0 .6) ;
4

5 public void f () {
6 {
7 byte [] data = new byte [dataSize] ;
8 }
9

10 byte [] data2 = new byte [dataSize] ;
11 }
12

13 public s t a t i c void main (S t r i n g [] args) {
14 JavaMemoryPuzzle jmp = new JavaMemoryPuzzle () ;
15 jmp . f () ;
16 }
17 }

Listing 14: Java memory puzzle

offset bytecode Java explanation
method invocation

00 aload_0 this Push this onto the stack.
01 getfield 0 24 this.dataSize Push value from field this.dataSize onto the

stack.
04 newarray 8 new byte[dataSize] Push new array of type byte with length

dataSize onto the stack.
06 astore_1 data = new byte[dataSize] Pop the topmost array from the stack and store it

as local variable #1.
07 aload_0 this Push this onto the stack.
08 getfield 0 24 this.dataSize Push value from field this.dataSize onto the

stack.
11 newarray 8 new byte[dataSize] Pop the topmost array from the stack and store it

as local variable #1.
13 astore_1 data2 = new byte[dataSize] Push array a onto the stack.
14 return (finish execution) Return from execution.

Listing 15: Bytecode for JavaMemoryPuzzle

The Java specialist newsletter proposed a solution for a program that circumvented the problem
and asked its readers to explain the observed behavior. The modified method public void f()
is shown in Listing 16. However, the messages written to the console meant to distract readers.
Despite the first guess, the loop does not allow garbage collection to kick in. As long as the
array is stored as a local variable and the frame is not discarded, the memory will not be freed
regardless of the time that elapses. In fact, the loop’s variable i is stored as local variable #1.
Thereby, it makes sure that no reference to data exists, and the memory occupied by it is freed
before the second array is generated.

Consequently, a simpler example can be generated that has the same effect. It is shown in
Listing 17. Please note that it is necessary to use the code blocks. Otherwise, the local variable
would not be reused.

The step-by-step execution window of Muggl is shown in Figure 9. On the left side, the bytecode
instructions are listed. For each instruction the offset, the instruction with additional bytes, and
more detailed information are given. The latter includes jump targets, values to be pushed for
instructions for which this is not obvious, and resolved method identifiers. Moreover, each instruc-
tion offset is colored to reflect the jump behavior of it and to indicate whether it may throw an
exception, or not.

� 30 Step-by-Step GUI

1 public void f () {
2 {
3 byte [] data = new byte [dataSize] ;
4 }
5

6 for (i n t i =0; i <10; i ++) {
7 System . out . p r i n t l n (" Please be so k ind and re lease memory") ;
8 }
9

10 byte [] data2 = new byte [dataSize] ;
11 }

Listing 16: Java memory puzzle solution

1 public void f () {
2 {
3 byte [] data = new byte [dataSize] ;
4 }
5

6 {
7 i n t a = 0;
8 }
9

10 byte [] data2 = new byte [dataSize] ;
11 }

Listing 17: Java memory puzzle solution—our simple version

Figure 9: Step-by-step execution window for normal execution

Configurability 31 �

In the middle of the window, already defined local variables are shown by number, variable name,
type, and value. Values are directly shown for primitive types; for objects, their toString() method
is used to get a string representation. The following area shows elements that are on the operand
stack. With the help of four buttons it is possible to push and modify stack elements of primitive
types and their corresponding wrapper classes, to pop elements from the stack, or to clear it
completely. Finally, the third area shows frames that are on the virtual machine stack.

The right side of the window is used for the state of symbolic execution and is unavailable during
normal execution. The “solution” area will be used to display a value returned from execution.

In the lower part of the window, execution can be controlled with the help of a number of buttons.
It is possible to execute one step or a number of consecutive steps. Stepping can be stopped and
the time spent per step can be set. Moreover, it is possible to execute a number of steps without
showing each single step; the window is refreshed with the current state once the desired number
of instructions have been executed. Moreover, execution can be restarted. Additionally, a small
area shows the most recent messages written to the log file. Finally, the options dialogue can be
opened or the window closed (and step-by-step execution thereby halted).

If symbolic execution is chosen, the step-by-step window makes use of the three additional areas
on the right side (Figure 10). The upper area lists choice points currently active. Their number in
descending order is given along with their type. Moreover, the method in which they have been
set, the offset (pc of the executed frame), and the instruction that created them are given. The
second area lists constraints currently on the constraint stack. They are given in descending order;
when backtracking, the topmost one will be negated. Finally, the third area gives information on
control-flow and data-flow coverage.

In the “Solutions” area, possible paths through the program are listed by constraints that describe
the input parameters and a constraint (or an exception type) that describes the output. No con-
stant values are assigned as this point.

The step-by-step GUI has proven to be a versatile tool. It is particularly helpful if errors occur
during execution. Since the execution window shows the number of executed instructions, it is
possible to restart execution using the step-by-step window and to then skip execution to an
appropriate point. In general, this would be a few instructions before the error halted execution.
Using the step-by-step functionality, it can be observed what happened to the JVM state right
before the error occurred. The problem can be understood—and fixed—in many cases. Despite
some cases in which errors have their roots in an error that occurred ten thousands of instructions
executed prior, the step-by-step GUI helped to greatly enhance Muggl.

5.3 Configurability

Muggl is an experimental tool. While a commercial TCG tool should not need much configuration,
Muggl is highly configurable. Most of its standard values are suitable for most programs to gener-
ate test cases for. Changing some key values has great influence on how successful TCG is. In
cases where Muggl does not generate test cases or requires too much time, optimizing additional
values can improve execution.

For reasons of performance and encapsulation, Muggl has several singleton objects that provide
general options and particular settings. All changeable values are read from an XML (Extensible
Markup Language) configuration file. Currently, over 60 setting can be changed. Further settings
can be modified with regard to programs when running Muggl (such as predefined parameters).
Additionally, Muggl provides some hard-coded settings. They require compilation of class Globals
to be changed. These are values that might be changed in the future (or even provided as con-
figurable settings), but at the moment it would not be reasonable to touch them. Examples are

� 32 Configurability

Figure 10: Step-by-step execution window for symbolic execution

the version number of Muggl and a minimum delay in milliseconds used when threads are tem-
porarily stopped. The idea is to never use numerical constant in Muggl’s code. Constants are
either defined in appropriate classes, or—if they are general constants and cannot be attributed
to a class—in the above mentioned Globals class.

With the exception of a small number of experimental settings that are subject to be removed in
the future, all settings can be changed in Muggl’s option dialogue. Options are provided in tabs
for a variety of categories (see Figure 11). The following options are provided:

� General
In this tab, the Java Runtime Environment (JRE) can be specified and the used class path edited.
Both directories and jar files can be added to the class path (see Figure 12).

� File inspection
This tab allows to customize colors that are used in the class file inspection windows (cf. Sec-
tion 5.4).

� Visual
GUI options both for the main windows and the step-by-step GUI can be set in this tab. In partic-
ular, several levels of visually skipping method invocation in step-by-step mode can be chosen.

� Execution
This tab offers options with regard to the virtual machine’s general behavior. The maximum run-
time can be set, handling of native methods can be configured (cf. Section 5.7), and dynamic
optimization of instructions can be enabled (cf. Section 5.8).

Configurability 33 �

Figure 11: One tab of the options dialogue

� Symbolic execution
In this tab, strategies for array generation can be customized (cf. Section 7.1).

� Search algorithm
This tab offers the customization of a number of settings regarding the search algorithm. First of
all, either depth-first or iterative-deepening can be chosen. If the latter is selected, starting depth
and incrementation factor can be specified. Moreover, forced backtracking if execution is stuck
in a loop can be enabled. Finally, as an additional abortion criterion a number of instructions (or
choice points) without finding a new solution can be specified after that execution is finally halted.

� Coverage
In this tab, control-flow and data-flow coverage can be customized. More information is provided
in Section 5.5.

� Test cases
Directory, package, and naming scheme for test cases are specified in this tab. Furthermore, test
case elimination based on coverage information can be configured (cf. Section 5.6).

� Logging
Logging can be switched between HTML and simple text in this tab. Moreover, the maximum
number of entries per log file can be specified. If this number is reached, Muggl will continue
logging in another, consecutively numbered file. This is specifically important for HTML logging.
If logs become too large, Web browser tend to crash while rendering them.

Options can be saved (Muggl then overrides the configuration file) with “Ok” and “Apply”; the

� 34 Class File Inspection

Figure 12: Editing class path entries

first button also closes the window. “Discard” and “Cancel” discard changes; the latter button
also closes the window. “Load defaults” resets all values to defaults which are suitable for most
programs that test cases should be generated for.

5.4 Class File Inspection

Muggl is meant to be a powerful tool for test case generation. Nevertheless, it is reasonable to pro-
vide additional functionality. With supplemental functions, Muggl can also be used for debugging
and to better understand Java programs. Providing this function is fostered by the code Muggl
already requires for test case generation. For example, Muggl has a parser for class files and
provides data structures to represent the internal structures of a Java class (see Section 5.10). It
is only a short step to visualize them.

The class file inspection window (see Figure 13) does exactly that. It displays class files in a
hierarchical tree structure. class files consist of all information required to store an executable
Java class along with its methods and all data required by them. This comprises data structures
such as the constant pool, exception tables, and many additional attributes. Details are described
in the JVM specification [17] and were summarized in Section 3.

With the tree structure, elements of interest can be expanded. This keeps the view easy to
comprehend since class files can comprise a high number of fields, methods, and constant pool
entries. Inspection of the entry of a method is shown in Figure 14. Some nested entries are
expanded. Along with the step-by-step GUI, the class file inspection window is very helpful to
better understand how Java programs work and to optimize them.

A distinct feature is Muggl’s capability to write class files. Currently, string entries of the constant
pool (or their representation as CONSTANT_Utf8_info to be precise) (see Figure 15) can be edited.
The changed class can then be saved to another file. Changed to constant pool entries directly
affect execution in Muggl. Unsaved changes are lost if Muggl is closed or if the class file cache is
flushed. For future releases, editing of additional class file constructs could be added.

5.5 Control-Flow and Data-Flow Coverage

Coverage of control-flow and data-flow are important criteria for test case generation. Test cases
should cover as many control-flow graph edges and def-use chains as possible—ideally all that
are coverable. Muggl tracks control-flow and data-flow and takes it as as an abortion criterion.
That means, it decides based on coverage information when symbolic execution is finished. Using
coverage information is exhaustively discussed in a paper on Muggl already [19]. Therefore, only
a short introduction is given here.

Control-Flow and Data-Flow Coverage 35 �

Figure 13: Class file inspection window

Figure 14: Class file inspection of a method’s definition

� 36 Control-Flow and Data-Flow Coverage

Figure 15: Class file inspection of the constant pool

Muggl is capable of building control-flow graphs and creating def-use chains for any program.
Def-use chains are built interprocedurally, which requires an sophisticated approach. They are
created statically in order to be able to determine the coverage level reached during symbolic
execution. Graphs and chains can be determined for the method executed, for any methods
of the same class, for any methods of the same package, or for all methods. In general, it is
advisable to exclude methods that are known to be free of defects from coverage tracking. This
speeds up application. For example, methods from the Java libraries should normally not be
included. Configuration is possible using the option dialogue (see Section 5.3).

During symbolic execution, Muggl tracks coverage information. Special care has to be taken of
backtracking and restarting execution due to iterative-deepening. Coverage information can be
reverted using the trail. Muggl can be configured to abort execution once full coverage of edges
and chains has been reached. Theoretically, abortion would also be possible when reaching a
threshold value. This is not currently implemented. In general, full coverage is hardly reachable
in practice. While def-use chains might be fully covered, some control-flow graph edges remain
uncovered in almost any example. They cannot be covered for semantic reasons. For example,
by specification on any method invocation, a java.lang.RuntimeException or any of its subtypes
might be thrown. However, most methods will never throw a RuntimeException. Nevertheless,
an additional edge for this exception type exists in the statically generated graph.

It has proven to be a good choice to abort execution based on def-use coverage for the initially
executed method and any methods from the same package. Abortion based on control-flow cov-
erage has proven impractical; similarly, intraprocedural def-use chains beyond class boundaries
become too complicated to be handled efficiently.

Allowing threshold values for coverage in order to abort execution might be a feasible approach.
However, means to determine a reasonable threshold have to be found.

Native Wrapper 37 �

5.6 Test Case Elimination

Coverage is not only tracked as a criterion to abort execution. It is also used to eliminate test
cases. For each solution, coverage data is saved. When execution is finished and the solution
processors is activated, it may invoke test case elimination. Test case elimination can be done
based on control-flow or data-flow coverage, or based on both. Since basing it on one criterion
only might omit test cases that would detect additional defects, elimination based on both criteria
is recommended.

The elimination process is described in [19]. Muggl uses a greedy algorithm to select solutions. It
selects solutions for inclusion in the set of kept solutions as long as not all coverable control-flow
graph edges and def-use chains have been covered by the selected set of solutions. Once such
a set is compiled, all other solutions can be discarded. Due to the greedy algorithm, elimination
is very fast; even for hundreds of thousands of test cases it only took a few second in test runs.
Moreover, for most examples only a very small number of test cases remain—in almost any ex-
ample we tested it was the optimal number of test cases (despite the heuristic nature of a greedy
algorithm).

Up to now, no examples have been found in that non-redundant test cases have been eliminated.
Theoretically, there could be solutions that do not further contribute to coverage but still would
detect a defect that is not detected by the test cases generated from the selected set of solutions.
If such an example is found, another criterion has to be included in the elimination process. More
details on test case elimination based on coverage is described in [19].

5.7 Native Wrapper

Realistic (i.e. productively used) Java programs make use of so called native methods. Parts of
the Java libraries are not implemented in Java but in platform specific code (usually in C). This
code is required to communicate with the operating system and for performance reasons. Typical
methods that have a native implementation access files, write messages to the console, or render
GUI elements. Since Muggl is implemented in Java and does not have a native interface to C
code, it cannot execute native code.

To be able to run programs that invoke native methods, Muggl provides a native wrapper. This
component detects calls of native methods and handles them. Muggl offers two strategies of
dealing with native method calls:

� The first strategy is to invoke handling code in Muggl. This is for example done for the often
used System.out object, which writes messages to the console. Messages are not written to
the console but forwarded to Muggl’s log file. Another example is System.arraycopy(Object,
int, Object, int, int). This methods copies an array or parts of it. It is implemented natively
for performance reasons. Muggl forwards calls of this method to a pure Java implementation
of arraycopy. It is considerably slower than the native implementation. Nevertheless, for all
examples yet tested this does not lead to a bottleneck. In particular, symbolic execution requires
so many resources that overhead for native execution can be neglected—it is much slower than
constant, i.e. normal execution, anyway.

� The second strategy is applied to all native method calls for which no wrapper implementation
exist. Muggl converts arguments supplied to native methods from their internal representation into
objects compatible with the system’s JRE. It then directly invokes the native method using the Java
environment it runs on. The result from execution is converted back to a Muggl data structure and
used for further execution. This process is convenient and sounds rather simple. However, much
code is needed specifically to cover the conversions. Conversion is a time-consuming process.

� 38 Dynamic Optimization

Therefore, the first strategy is preferable for performance reasons. Nevertheless, in examples yet
tested the overhead in symbolic execution mode was negligible. It even was hardly noticeable
in normal execution mode but would be a problem for high-performance applications that e.g.
throughput streams of data.

Native wrapping currently is only possible for methods from the Java libraries (such as java.*
and javax.*). Theoretically, it could be extended to third-party libraries. The conversion process
would not change. However, there has not been a reason for adding such functionality, yet. Many
third-party libraries do not consist of native code. Those that require native method calls are
infeasible for being tested. An example is the GUI library Simple Widget Toolkit (SWT) which
extensively uses native methods.

It also has to be noted that native wrapping using the second strategy fails for symbolic variables.
While constants used in symbolic execution can be converted, conversion fails for variables. This
can only be circumvented by implementing the native methods as wrappers in Muggl. However,
not many examples have been found yet for that this limitation applies. Many native methods are
called with constant arguments only or do not accept arguments. Therefore, more wraps will be
added when needed.

5.8 Dynamic Optimization

While Java code was said to be executed slowly on the first releases of (by then) Sun’s JVM,
today’s virtual machines employ advanced optimization techniques. Due to dynamic optimization,
code can even be executed faster than native code written in languages such as C or even as-
sembly language. This becomes possible by taking into account information that only is available
at runtime; the resulting optimization lead to faster code execution despite intrinsic overhead of a
virtual machine in comparison with directly executed machine code. Therefore, a dynamically op-
timizing virtual machine is a cheap and convenient alternative to manual optimization of assembly
code.

Generating test cases within a reasonable amount of time is essential. Besides optimizing sym-
bolic execution, the JVM of Muggl can be improved. For this, dynamic optimization has been
included as an experimental feature. Java bytecode comprises several instructions that are very
computationally expensive. In particular, all instructions that fetch elements from the constant
pool and method invocations take much longer to execute than instructions such as arithmetic op-
erations or conditional jumps. Most of the computationally intensive operations can be optimized.

The reasons some operations are expensive either is their handling of computationally expensive
objects (such as strings), or the need to resolve fields or methods. However, fetching a String
from the constant pool, or resolving fields or method is done in the same way each time the
instruction is executed.7 If such instructions are nested in loops, or if they belong to methods that
are executed multiple times, execution time can be saved. On their nth execution, the results from
computationally expensive actions that have the same result on each execution, are stored. The
next time the instruction is executed, it does not need to compute the data but can directly provide
it or use it for further computation. With a minimal increase in memory footprint, much execution
time can be saved.

In practice, a suitable value for n has to be found. Saving the value creates overhead. Therefore,
it would be a waste of execution time and memory to save data if the instruction is not executed
another time. However, executing it twice or more before storing the data means that on each call
until n, the possible saving of execution time is not realized. From early experiments, values of 2
or even 1 result in the best performance.

7This statement holds for most but not all instructions. Methods invocation might change dynamically with an object
under consideration. Special care has to be taken to cope with such cases.

Array Generation 39 �

Dynamic optimization is implemented by providing additional bytecode instructions that replace
instructions suitable for dynamic optimization. On the nth call, they store the calculated value in
another instruction and replace themselves with it. In subsequent calls, the optimized instruction
with predefined data is executed. While replacing instructions sounds like much effort, it is com-
putationally cheap. In particular, Muggl offers interfaces that can be used to easily write optimized
counterparts for existing instructions.

Currently, dynamically optimized instructions exist for ldc_w, ldc2_w, and invokestatic. The
first two instructions fetch strings from the constant pool; the third one invokes static methods.
Additional instructions will be added after further testing.

5.9 Array Generation

Muggl’s solver does not have means to symbolically represent arrays. While it is possible to have
arrays with symbolic elements, arrays that are symbolic themselves would have a variable length
and arbitrary variable or constant elements. This limitation does not hinder execution if arrays
are initialized with constant value during execution. However, if arrays are initialized with a logic
variable given for the length or if arrays are expected as input parameters, symbolic executing
would fail. Therefore, Muggl uses a strategy to provide arrays for symbolic execution.

The basic idea is to execute the program under consideration with arrays of various fix lengths. For
this purpose, an array generation choice point is set at x aload instructions that get values from
arrays provided as arguments and at instructions that generate arrays but encounter a variable
specifying the length. These choice points initialize a so called array generator. It provides an
initial array and execution is continued with this array. If backtracking reaches the array generation
choice point, it provided another array. The elements of non-empty arrays are logic variables if
their type is either primitive or a primitive wrapper class.

Array generators follow a distinct strategy. In fact, Muggl has four built-in array generators which
can be selected and configured in the options dialogue (cf. Section 5.3). Thus, they are seam-
lessly integrated. During our tests, we found that in almost any case there is no need to configure
a generator to provide a high number of arrays. This merely prolongs execution. Usually, one of
the following two attempts is successful:

� Provide several short arrays starting with 1 and with up to about 32 elements.

� Provide several arrays with quickly increasing length. Thus, both very short and very long
arrays are tested.

We cannot think of any but of artificial algorithms that would require 231 different arrays to be
tested. 231 − 1 is the maximum size of an array permitted by Java.8 To provide arrays for various
needs, the total number n ∈ N of arrays to be provided can be set. Muggl will backtrack this often
to the choice point and request another array from the generator. Backtracking will of course only
be done as long as abortion criteria have not been met.

Besides the number of runs, a starting length of l ∈ N can be specified. Typically, l will be 1.
There might be algorithms that by contract only process array length l′ ∈ N+ with l ≥ l′ which can
be satisfied by changing l. Furthermore, the generator can be configured to provide one array of
zero length and the null reference instead of an actual array. According to the JVM specification,
arrays of zero length (i.e. empty arrays) are not equal to null [17]. Many algorithms will fail if
an empty array is provided, and even more cannot handle null instead of an array. Therefore,
providing both usually yields additional test cases that could identify additional defects.

8Arrays’s length is given by an int value. The maximum positive int is 231 − 1. Counting the zero length array, there are
231 arrays of distinct length.

� 40 Java Class File Representation by Java Classes

There are four basic strategies for array generation that determine the length of the generated
arrays. Regardless of the strategy, a set A = {a1, . . . , an} with arrays ai, i ∈ N+ being the ith
array is requested. All strategies provide arrays in order of ascending lengths. No reason could
be identified to provide them in another order. The strategies can be described as follows:

Linear
Starting with a length of l, subsequent arrays are created for n times. A linear increment j ∈ N+

is used to increase the array length each time an array is requested. Hence, the length of the
generated array is l + (i − 1) ∗ j with l > 0. Typical sequences of length include 1, 2, 3, . . .,
10, 20, 30, . . . or 111, 222, 333, This strategy is ideal for testing an algorithm with a couple of
short arrays.

Fibonacci
Arrays are generated with a length of fl+i with l ≥ 1 according to the fibonacci sequence with
fn = fn−1 + fn−2, f0 = 0 and f1 = 1. If the length determined would cause a 32 bit Java int to
overflow, a length of java.lang.Integer.MAX_VALUE i.e. 231−1 is used. This for example applies
to l = 1 ∧ i > 46. A sequence with l = 1 provides arrays of lengths ∈ 1, 2, 3, 5, 8, 13, 21, 34,

Exponential
The length of the generated array is l + 2i−1 with l ≥ 0. Again, integer overflow is prevented
by generating an array of length 231 − 1 for l + 2i−1 > 231 − 1. A typical sequence of length
is 1, 2, 4, 8, 16, 32, 64, 128, 256, Due to the nature of exponentiality, this strategy is ideal to
generate array to first test an algorithm with a couple of shorter arrays but to also examine its
behavior when confronted with very large arrays. The maximum number of arrays generated is 32
(again due to exponentiality).

Ten to the power of x9

This strategy generates arrays with a length of l+10i−1 with l ≥ 0. Thus, the maximum number of
calls is 10 with any further call generating an array of length 231− 1 to prevent an integer overflow.
The sequence of length 11 with l = 0 is 1, 10, 100, 1 000, 10 000, 100 000, 1 000 000, 10 000 000,
100 000 000, 1 000 000 000, 2 147 483 647.

If the generator has been configured to provide arrays of zero length or null, they will be provided
first before arrays of non-zero length will be generated. Consequently, the number of total arrays
tested is n+ 1 or n+ 2 whereas n is the number of arrays provided by the generation strategy.

5.10 Java Class File Representation by Java Classes

The package de.wwu.muggl.vm.classfile provides structure to represent Java class files. Each
Java class file is represented by a class ClassFile and by a number of classes that implement
the interface ClassFileStructure. Thereby, class file can be completely represented by Java
classes. They are very convenient to use. Moreover, these data structures can as well be used
by other applications.

A diagram of the package, basic classes and its subpackages is given in Figure 16. Subpackages
are depicted in Figures 17, 18, and 19. As high level views, no method definitions or public class
members are given. Muggl’s JavaDoc documentation described the Application Programming
Interface (API) provided by these classes.

9This strategy might be dropped since it is hardly needed with the exponential strategy available.

Java Class File Representation by Java Classes 41 �

de.wwu.muggl.vm.classfile

de.wwu.muggl.vm.classfile.structures
ClassFile

ClassFileException

ClassFileWriteAccessViolationException

Limitations

de.wwu.muggl.vm.classfile.support

BytecodeParser

Figure 16: UML class diagram for de.wwu.muggl.vm.classfile

de.wwu.muggl.vm.classfile.structures

de.wwu.muggl.vm.classfile.attributes

de.wwu.muggl.vm.classfile.constants

Constant

FieldMethod

Field

Method

UndefinedValue

ClassFileStructure.java

Attribute

Figure 17: UML class diagram for de.wwu.muggl.vm.classfile.structures

� 42 Java Class File Representation by Java Classes

de.wwu.muggl.vm.classfile.structures.attributes

AttributeAnnotationDefault
de.wwu.muggl.vm.classfile.structures.attributes.e

lements

Annotation

AttributeRuntimeVisibleParameterAnnotation

ElementValue

ElementValueAnnotation ElementValueArray

ElementValueClass ElementValueEnum

ElementValuePair

ElementValuePrimitive

InnterClass

LineNumberTable

LocalVariableTable

ParameterAnnotation

ExceptionTable

AttributeCode

AttributeConstantValue

AttributeDeprecated

AttributeInnerClasses

AttributeLineNumberTable

AttributeLocalVariableTable

AttributeRuntimeAnnotationsAbstract

AttributeRuntimeInvisibleAnnotations

AttributeRuntimeVisibleAnnotations

AttributeRuntimeParameterAnnotationsAbstract

AttributeRuntimeInvisibleParameterAnnotations

AttributeRuntimeVisibleParameterAnnotations

AttributeSourceFile

AttributeSynthetic

AttributeUnknownSkipped

NoMoreCodeBytesException

AttributeExceptions

Figure 18: UML class diagram for de.wwu.muggl.vm.classfile.structures.attributes

Tested Examples 43 �

de.wwu.muggl.vm.classfile.structures.constants

ConstantClass

ConstantDouble

ConstantLongDouble

ConstantLong

ConstantMethodref

ConstantFieldInterfaceMethod

ConstantInterfaceMethodref

ConstantFloat

ConstantIntegerFloat

ConstantInteger

ConstantNameAndType

ConstantFieldref

ConstantString ConstantUtf8

Figure 19: UML class diagram for de.wwu.muggl.vm.classfile.structures.constants

6 Experimental Evaluation

In the following three sections, a short summary of experimentation with Muggl is given. Both
qualitative and quantitative results are discussed.

6.1 Tested Examples

Muggl has been tested for a variety of examples. It was successfully able to generate test cases
for many of them. In particular, it was successful for the following examples:

� A myriad of small examples have been tested. During the development of Muggl, roughly
25 test classes have been created. Each contains up to 20 methods. Whereas the first class
contains simplest methods that test the basic symbolic execution, classes become subsequently
more complicated. However, all classes contain artificial examples, which were written to evaluate
Muggl. Nevertheless, these classes ensured that instructions are implemented correctly and
that all basic principles of symbolic execution behave as expected. They underline the general
feasibility of the approach

� Several rather simple algorithmic examples have been tested. Algorithms include binary search,
calculating fibonacci numbers, greatest common divisor, mergesort, quicksort, and approximation
of square roots by Newton’s method.

� Muggl has been used in combination with the e-assessment tool EASy [32, 13] in a basic
course on programming. It was used for a realistic example. Muggl successfully generated test
cases for an algorithm that blurs images. Students were asked to implement the blur algorithm
without knowing our exemplary solution. They could then request an automatically generated
test case for it. In most cases, generation was successful despite differences in implementation.
In cases in that generation failed, it could mostly be attributed to the complexity of the student’s

� 44 Qualitative Results

solutions. To provide immediate results, a maximum execution time of 5 seconds was chosen. If
a solution was too complex, test case generation did not finish within this time.

Some of the examples we tested do not lead to satisfying results, yet. This particularly applies to
more complex algorithms or small programs that extensively use sub classes. Tested examples
are the price calculation of Deutsche Bahn, binary trees, and Kruskal’s algorithm.

A number of examples need further validation since they have only recently been added to the
pool of considered programs. This for example includes swapsort, calculation of the dot product
of two vectors, calculation of classes for a histogram, fast Fourier transformation, and heapsort.

Finally, there are some examples for that test case generation currently fails. This specifically
applies to some of the student’s solutions. Out of approximately 60 solutions uploaded, three
were identified for which test case generation failed for no apparent reason and independent of
running time. These solutions have to be examined further.

6.2 Qualitative Results

Continuous experimental evaluation is an essential part of Muggl’s development. It thereby has
led to various findings:

� Muggl’s general approach is feasible. Symbolic execution is possible for all bytecode instruc-
tions. It can be executed quickly, typically with rates of several thousand instructions per second.

� For many small examples, test cases are found very quickly.

� A low search-depths and restrictive options are feasible in most cases. The number of test
cases found by Muggl is much lower than for high search depths and non-restrictive settings.
However, after elimination the same number of unique test cases remains.

� For large programs, the state space becomes too large to be explored with the current means.

� Muggl’s solver is flexible and reliable but fails in some special situations. For example, the
above mentioned price calculation example fails because the solver runs into and infinity loop.
Such problems have to be addressed in future versions of Muggl.

6.3 Quantitative Results

A number on quantitative results on Muggl has been published in [19]. An extended overview of
these results is given in Table 3.

In general, the number of generated test case is strongly influenced by the settings chosen when
running Muggl. The results in Table 3 reflect this. The number of test cased generated is artificially
high in some cases. Some of the tested algorithms have been chosen to benchmark test case
elimination rather than to benchmark Muggl in general. All examples were run on a system with
an Intel Core 2 Duo E6600 CPU at 2,4 GHz and 3 gigabytes of PC2-6400 memory. The operation
system was MS Windows XP with Service Pack 3. The Java SDK 1.6.0_07 was used. VM heap
size was limited to 512 megabytes with an initial value of 256 megabytes. However, memory was
no limitation in either of the examples.

Quantitative Results 45 �

Aborted Test cases Elimination
Algorithm Runtime by found eliminated left time
binary search 0.14s coverage 60 57 3 < 0.05s
greatest common divisor 10.0s time 62 59 3 < 0.05s
greatest common divisor 30.0s time 85 82 3 < 0.05s
fibonacci 10.0s time 2 1 1 < 0.05s
fibonacci 180.0s time 2 1 1 < 0.05s
mergesort 10.0s time 201 199 2 < 0.05s
quicksort 10.0s time 139 136 3 < 0.05s
quicksort 180.0s time 488 485 3 0.18s
Newton’s method 0.19s coverage 29 24 5 < 0.05s
Deutsche Bahn pricing 10.0s time 28 24 4 < 0.05s
Deutsche Bahn pricing 180.0s time 28 24 4 < 0.05s
Deutsche Bahn pricing 300.0s time 28 24 4 < 0.05s

Table 3: Experimental results for test case generation and elimination.

The following settings have been used:

� Muggl’s native wrapper was enabled (cf. Section 5.7).

� Instructions were dynamically reflected by optimized ones (cf. Section 5.8).

� Depth-first iterative-deepening with starting depth of 5 and an increment of 3 was used. Soft
abortion was set to 200, i.e. the maximum number of iterations per loop was 200 (cf. Section 5.1).
This has proven to be reasonable in our tests.

� Coverage was tracked for the initial method and any method it invokes from its own package.
Full coverage of control-flow edges and def-use chains immediately aborted execution.

� Test cases were eliminated based on their contribution to both control-flow and to the data-flow
coverage.

The result compiled in Table 3 underline the feasibility of our approach. After elimination, the
optimal number of test cases remain for almost all examples. Please note that the number is
bound to the implementation of our examples; other implementations might need more or less
test cases. Even with structural equivalence of the main algorithm, this can e.g. be caused by
explicitly throwing exceptions of varying type.

For exemplary illustration, consider binary search. Execution was halted after 0.14s since full
coverage of control-flow graph edges and def-use chains could be reached. 60 test cases were
found of which 57 could be eliminated. Elimination time was below the threshold for a meaningful
result—it was performed without noticeable delay and results did not stabilize but always were
below 1

20 of a second. Of the three test cases, two represent usage of the binary search while
one represents an exception. In the first one, both the left and the right side of the array are
searched through before the position of the searched value is returned. In the second test case,
search is unsuccessful. Instead of an array, null was supplied in the third case. Consequently, a
NullPointerException is thrown.

As discussed earlier, abortion criteria are a problem. Only in two examples, execution was aborted
due to full coverage. In all other examples, the time limit was reached. Increasing the time
limit shows that more test cases are found, but the same number of test cases remains after
elimination. Manually inspecting them reveals that they are the expected test cases. In fact, no
test cases are missing. Therefore, coverage was not reached for semantic reasons and test case

� 46 Ongoing Research

time Test cases Eliminated
Algorithm limit found eliminated left time
bin. search 10.0s 13.530 13.526 4 0.13s
bin. search 60.0s 79.676 79.672 4 0.5s
bin. search 600.0s 374.883 374.879 4 3.56s
quicksort 180.0s 1.158 1.154 4 <0.05s

Table 4: Additional experimental results

generation could have been aborted earlier. Nevertheless, it has to be noted that Muggl always
found suitable test cases in a very short time.

Two more notable observations can be made. Firstly, no additional test cases are found for calcu-
lating fibonacci numbers. Two test cases are found of which one is sufficient for testing. This is
almost independent of execution time—both test cases are found within fractions of the first sec-
ond of execution. Obviously, full coverage cannot be met but the algorithm has an unpropitious
loop. Consequently, it is impossible to discover all states and thus finish execution. Secondly, the
price calculating for Deutsche Bahn fails. Only four test cases remain after elimination whereas at
least 16, but probably even many more would be expected. Calculation at the time of implement-
ing the example was based on 16 parameters. Regardless of elimination time, only 28 examples
are found. Deleting 12 of them is justified—these test cases are redundant and not eliminated by
error. After finding 28 solutions, Muggl’s solver runs into an infinite loop. This effectively precludes
finding more test cases. Optimizing the solver is an ongoing task.

For additional tests, array generation was used (cf. Section 5.9). Deactivating all abortion criteria
but the time limit, this led to an extremely high number of test cases which could be used to assess
the elimination algorithm’s performance. Results are shown in Table 4.10

These results show that deleting redundant test cases based on their contribution to the global
coverage is very efficient. Taking only a few seconds to eliminate a six-digit figure of test cases is
sufficient for almost any practical problem. Additionally, the greedy approach well approximates
the minimum number of test cases. Subsequential testing asserts this result.

Additional quantitative results are in preparation. They will be presented in future papers along
with a comprehensive analysis.

7 Ongoing Research

Research on Muggl is not finished. In fact, the technical base described in this paper suggests
that there are many possibilities for extension. A number of features is already in preparation.

7.1 Features in Preparation

Current work on Muggls deals with three additional features, which will be explained in the fol-
lowing. Besides, further examples are being tested and improvements to details are continuously
made.

10The table has been reproduced from [19].

Features in Preparation 47 �

7.1.1 Combination of Logic and Object-Oriented programming paradigms

The dominating programming paradigm is object-orientation. Concepts such as inheritance and
encapsulation of structures and behavior [18] provide advantages with respect to maintainability
and adaptability [27]. Nevertheless, other programming paradigms are better suited for distinct
application domains. For example (constraint) logic languages such as Prolog [34] are used
for search-problems. Prolog provides a built-in search mechanism [29]. In some cases, other
paradigms are even used for developing business software. The functional language Erlang [1]
is successfully used especially in the telecommunication industry [26, 25, 35]. This observation
encourages developing new problem-adequate languages.

Currently, we prepare an approach that combines object-oriented programming in Java with the
search capabilities of logic programming concepts such as logic variables, constraint solving, and
backtracking. With the symbolic JVM described in this article, we have all means already at hand.
What we need to provide is an interface to use them explicitly. We intend to do this in form of a
novel programming language.

Our language will preserve the syntax of Java and use Java annotations to add logic programming
concepts. If executed on a normal JVM, annotations will have no effect and the program will
perform without search. However, if executed on the SJVM, it will use the same concepts we use
for generating test cases. Of course, results are not written as a test case file but available as a
list during execution.

To implement the programming language, only little changes to the SJVM will be needed. Exten-
sive work has to be spent on the annotation framework. It does not need to provide a high number
of annotations but be conceptionally sound.

7.1.2 Data Structure Generators

Array generators, as described in Section 5.9 are a necessity since it is impossible to symboli-
cally represent arrays of variable length in Muggl. It is possible to represent object structures of
arbitrary complexity. Since only variables of primitive type or their wrapper classes need to be
symbolical, building object structures and using them for symbolic execution in theory does not
cause problems. However, it often becomes impractical.

Consider an algorithm for inserting and deleting entries from a tree (say, an AVL tree) that is to be
tested. Due to Muggl’s precise operation, it will rarely encounter valid AVL trees during symbolic
execution. In fact, most entries will be varying object structures with symbolic values that are not
AVL trees. Even a simple tree usually consists of a two digit number of objects which reference
each other. Without question, both insert and delete should be tested on invalid structures
as this might yield additional test cases. Keeping in mind the infinite number of possible object
structures, the algorithm will hardly be tested with valid trees and thus it will take a very long time
until test cases that actually check the insertion and deletion functionality. For practical usage,
this is very inefficient and thus unacceptable.

Similarly to using array generators, data structure generators could be used. Whenever a complex
object structure as an input parameter is expected, an appropriate choice point is set. It initializes
an object structure generator which provides objects on subsequent calls. These objects should
comprise both invalid ones and valid ones. In contrast to the normal approach, there should be a
high number of valid object structures provided.

There are three challenges with regard to data structures generators:

� 48 Future Work

� An appropriate framework has to be implemented and built into Muggl. It needs to be reflected
in the GUI. Admittedly, it can be similarly implemented as the array generation framework.

� Adequate generators have to be found. It would be possible to provide generators for the most
common object-oriented data structures but ideally a way of having parameterizable generators
should be found.

� User support is needed. There have to be guidelines on how to use generators and when to
apply them. Probably, Muggl could also suggest generator usage when applicable.

Work on the generator framework is advanced; implementing actual generators is at an initial
state. A conference paper on generation is upcoming.

7.1.3 Solver Improvements

Experimentation revealed that despite the general feasibility of Muggl’s solver, in some cases
it fails to successfully finish solving (cf. Section 6). Therefore, ongoing research also includes
improvements to the solver. There are several ideas for this:

� Currently, solving has to be repeated if constraints are added or removed. Ideally, the solver
would keep track of partial solutions and only need to calculate what modifications have to be
made to solutions if constraints are added or removed.

� Additionally, it can be tried to allow incremental processing in the solver. Especially backtrack-
ing on level of the solver will be a challenge but might increase execution speed.

� To better support the two ideas mentioned above, a normalization algorithm could be applied
to the constraint system. It would remove redundant or unnecessary constraints. However, it has
to keep track of adding and removing constraint. A constraint considered redundant might be
required again after backtracking.

� The solver could be parallelized in oder to solve constraint in parallel. This requires to find ways
to disjunctly treat subsets of the currently active constraints.

� Currently, it is hardly possible to monitor the solver’s state. Muggl reports the total time required
for solving but there are no key figures generated on substeps of solving. Logging either is dis-
abled or leads to very verbose outputs. Thus, more convenient ways of keeping track of what the
solver does have to be found.

Work on improving the solver has already started.

7.2 Future Work

Future work on Muggl comprises work on the three features described in the previous section
along with a number of smaller tasks. In particular, more examples have to be implemented and
tested. We intend to both test well-known algorithms and an increasing number of examples from
other programs. With each example tested, either Muggl’s effectivity is proven or hints for needs
of further improvements are found. This circle of testing Muggl and improving it with regard to
the deficits found will be continued until it is capable of generating test cases for programs from
software development companies.

There is a couple of long-term goals. For example, the SJVM could be parallelized. It would then

process more than one path through a program’s search tree at once. Even with an parallelized
solver, this would increase execution speed for programs that are not solving-intensive but that
have a very high number of states to be discovered. Dynamic optimization should be extended to
comprise as many instructions as possible. Probably, further means of analyzing execution and
dynamically applying optimizing techniques can be added. Furthermore, Muggl could be enabled
to write test cases for other programming languages that are compiled to bytecode for the JVM.
Finally, adding threading and in particular finding a way of dealing with multiple threads during
symbolic execution is a task that might be addressed in future.

Future versions of Muggl should better support users. As long as Muggl is an experimental
prototype, manually finding the optimum configuration for each example is unproblematic. In fact,
it even helps to learn about Muggl’s behavior and to improve it. However, for commercial use
Muggl should be equipped with heuristically reasonable assumptions for settings. It probably
could rely on a set of standard setting and adjust them after analyzing a class file. Moreover, if
could detect if settings yield unsatisfiable results and propose (or even automatically change to)
more adequate settings.

An additional and not less important future task is to assess the abortion criteria Muggl uses.
Experimentation has shown that abortion is a problem. Ideally, Muggl should halt the SJVM
once all test cases required to test a program have been found. However, this has not yet been
possible—neither with “scientific” i.e. precise criteria such as full control-flow edge coverage nor
with impromptu criteria such as maximum running time. A mixture of existing criteria, thresholds
for the criteria currently used, and completely new criteria might be adequate. However, finding a
satisfying solution remains a future task. Even if maximum runtime remains the ultimate criterion,
Muggl should be able to approximate how long it will take to find a suitable set of test cases.

8 Conclusion

In this working paper, a comprehensive overview of Muggl has been given. Muggl is a tool for
automated test case generation based on symbolic execution. The paper sketched related work;
there is only a small number of comparable approached. Then, the Java virtual machine speci-
fication was briefly explained. in Section 4, the basic working principles of Muggl were sketched
and illustrated by examples. In particular, execution principles along with constraint solving and
test case generation were shown, and the architecture of Muggl highlighted.

Following the basics, Muggl’s distinct features were explained in detail. For this paper, nine char-
acteristics and functions of Muggl have been chosen that are specifically notable. Afterwards,
results from experimental evaluation were discussed. Even though the number of formally docu-
mented experiments is low, the results are promising. They align with further experimentation that
continuously accompanies the development of Muggl. Finally, ongoing research was sketched.
There are three upcoming extensions, namely a logic object-oriented programming language,
data structure generators, and improvements to the solver. Besides that, much more future work
is planned.

With its immense base of code and the features embedded in it, Muggl is perfectly fit to be further
extended. However, we will not only extend it but also improve existing functions. The aim is to
have a versatile yet easy-to-use tool for TCG. The status of Muggl described in this paper can be
seen as a leap towards this aim.

References 51 �

References

[1] J. Armstrong. The development of Erlang. In Proceedings ICFP ’97, pages 196–203, New
York, USA, 1997. ACM.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-Wesley,
4th edition, 2005.

[3] M. Bramer. Logic Programming with Prolog. Springer, Secaucus, NJ, USA, 2005.

[4] L. de Moura and N. Bjoerner. Z3: An Efficient SMT Solver, volume 4963/2008 of LNCS,
pages 337–340. Springer Berlin, 2008.

[5] K. Doets. From Logic to Logic Programming. MIT Press, Cambridge, MA, USA, 1994.

[6] J. Doyle and C. Meudec. IBIS: an Interactive Bytecode Inspection System, using symbolic
execution and constraint logic programming. In PPPJ ’03: Proceedings, pages 55–58, New
York, 2003.

[7] J. Edvardsson. A survey on automatic test data generation. In Proceedings of the Sec-
ond Conference on Computer Science and Engineering in Linköping, pages 21–28. ECSEL,
1999.

[8] R. A. Eyre-Todd. The detection of dangling references in C++ programs. ACM Lett. Program.
Lang. Syst., 2(1-4):127–134, March 1993.

[9] S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for functional logic
programs. In PPDP ’07: Proceedings of the 9th ACM SIGPLAN International Conference
on Principles and practice of declarative programming, pages 63–74, New York, NY, USA,
2007. ACM.

[10] S. Fischer and H. Kuchen. Data-flow testing of declarative programs. In ICFP ’08: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional programming, pages
201–212, New York, NY, USA, 2008. ACM.

[11] P. Godefroid, P. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann, and M. Y.
Levin. Automating Software Testing Using Program Analysis. IEEE Software, 25(5):30–37,
2008.

[12] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint solving
techniques. SIGSOFT Software Engineering Notes, 23(2):53–62, 1998.

[13] S. Gruttmann, D. Böhm, and H. Kuchen. E-assessment of Mathematical Proofs: Chances
and Challenges for Students and Tutors. In Proceedings of the 2008 International Conference
on Computer Science and Software Engineering - Volume 05, CSSE ’08, pages 612–615,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] S. Gupta. Pro Apache Log4j. Apress, Berkely, CA, USA, 2nd edition, 2005.

[15] C. Lembeck, R. Caballero, R. A. Mueller, and H. Kuchen. Constraint solving for generating
glass-box test cases. In Proceedings WFLP ’04, pages 19–32, 2004.

[16] P. Liggesmeyer. Software-Qualität: Testen, Analysieren und Verifizieren von Software.
Spektrum-Akademischer Verlag, Berlin, 2nd edition, 2009.

� 52 References

[17] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Prentice Hall, 2nd edition,
April 1999.

[18] K. C. Louden. Programming Languages: Principles and Practice. Wadsworth, Belmont, CA,
USA, 1993.

[19] T. A. Majchrzak and H. Kuchen. Automated Test Case Generation based on Coverage Analy-
sis. In TASE ’09: Proceedings of the 2009 3nd IEEE International Symposium on Theoretical
Aspects of Software Engineering, pages 259–266. IEEE Computer Society, 2009.

[20] T. A. Majchrzak and H. Kuchen. Automatische Testfallerzeugung auf Basis der Überdeck-
ungsanalyse. In M. Hanus and B. Brassel, editors, Technischer Bericht des Instituts
für Informatik Nr. 0915: 26. Workshop der GI-Fachgruppe "Programmiersprachen und
Rechenkonzepte", pages 14–25, Bad Honnef, Germany, May 2009. Christian-Albrechts-
Universität Kiel.

[21] T. A. Majchrzak and H. Kuchen. IHK-Projekt Softwaretests: Auswertung. In Working Papers,
number 2 in Working Papers. Förderkreis der Angewandten Informatik an der Westfälischen
Wilhelms-Universität Münster e.V., 2010.

[22] C. Meudec. ATGen: automatic test data generation using constraint logic programming and
symbolic execution. Software Testing Verification and Reliability, 11(2):81–96, 2001.

[23] R. A. Mueller, C. Lembeck, and H. Kuchen. GlassTT – a Symbolic Java Virtual Machine
Using Constraint Solving Techniques for Glass-Box Test Case Generation. Arbeitsbericht
Universitaet Muenster, Dept. of Information Systems, 102, 2003.

[24] R. A. Mueller, C. Lembeck, and H. Kuchen. Generating Glass-Box Test cases using a sym-
bolic virtual machine. In Proceedings IASTED SE 2004, 2004.

[25] T. Nagy and A. Nagyné Víg. Erlang testing and tools survey. In Proceedings ERLANG ’08,
pages 21–28, New York, NY, USA, 2008. ACM.

[26] J. H. Nyström. Productivity gains with Erlang. In Proceedings CUFP ’07, New York, NY, USA,
2007. ACM.

[27] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 1992.

[28] M. Prasanna, S. Sivanandam, R. Venkatesan, and R. Sundarrajan. A Survey on Automatic
Test Case Generation. Academic Open Internet journal, 15, 2005.

[29] P. H. Salus. Functional and Logic Programming Languages. Sams, Indianapolis, IN, USA,
1998.

[30] N. Tillmann and J. de Halleux. Pex–White Box Test Generation for .NET. In 2nd International
Conference on Tests and Proofs, pages 134–153, April 2008.

[31] N. Tillmann and W. Schulte. Unit Tests Reloaded: Parameterized Unit Testing with Symbolic
Execution. IEEE Software, 23(4):38–47, July 2006.

[32] C. A. Usener, S. Gruttmann, T. A. Majchrzak, and H. Kuchen. Computer-Supported Assess-
ment of Software Verification Proofs – Towards High-Quality E-Assessments in Computer
Science Education. In Proceedings of the 2010 International Conference on Educational
and Information Technology (ICEIT), pages 115–121. IEEE Computer Society, 2010.

References 53 �

[33] E. Wallmüller. Software-Qualitätsmanagement in der Praxis. Hanser, München, 2nd edition,
2001.

[34] D. H. D. Warren, L. M. Pereira, and F. Pereira. Prolog – the language and its implementation
compared with Lisp. In Proceedings Symposium on AI and progr. languages, pages 109–
115, New York, NY, USA, 1977. ACM.

[35] U. Wiger. 20 years of industrial functional programming. In Proceedings ICFP ’04, pages
162–162, New York, NY, USA, 2004. ACM.

[36] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In 11th Intl. Conference on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, pages 365–381. Springer, 2005.

Working Papers, ERCIS

Nr. 1 Becker, J.; Backhaus, K.; Grob, H. L.; Hoeren, T.; Klein, S.; Kuchen, H.; Müller-Funk,
U.; Thonemann, U. W.; Vossen, G.; European Research Center for Information Systems
(ERCIS). Gründungsveranstaltung Münster, 12. Oktober 2004. October 2004.

Nr. 2 Teubner, R. A.: The IT21 Checkup for IT Fitness: Experiences and Empirical Evidence
from 4 Years of Evaluation Practice. March 2005.

Nr. 3 Teubner, R. A.; Mocker, M.: Strategic Information Planning – Insights from an Action
Research Project in the Financial Services Industry. June 2005.

Nr. 4 Vossen, G.; Hagemann, S.: From Version 1.0 to Version 2.0: A Brief History Of the Web.
January 2007.

Nr. 5 Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality Check 2.0. July
2007.

Nr. 7 Ciechanowicz, P.; Poldner, M.; Kuchen, H.: The Münster Skeleton Library Muesli – A
Comprehensive Overview. 2009.

Nr. 8 Hagemann, S.; Vossen, G.: Web-Wide Application Customization: The Case of Mashups.
2010.

Nr. 9 Majchrzak, T. A.; Jakubiec, A.; Lablans, M.; Ückert, F.: Evaluating Mobile Ambient As-
sisted Living Devices and Web 2.0 Technology for a Better Social Integration

ERCIS – European Research Center for Information Systems
Westfälische Wilhelms-Universität Münster
Leonardo-Campus 3 48149 Münster Germany
Tel: +49 (0)251 83-38100 Fax: +49 (0)251 83-38109
info@ercis.org http://www.ercis.org/

ERCIS – European Research Center for Information Systems
	 Editors	 J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,
		 H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 10

Muggl:
The Muenster Generator of
Glass-box Test Cases

Majchrzak, T. A.
Kuchen, H.

W
or

ki
ng

 P
ap

er
 N

o.
 1

0	
M

ug
gl

: T
he

 M
ue

ns
te

r G
en

er
at

or
 o

f G
la

ss
-b

ox
 T

es
t C

as
es

ISSN 1614-7448

