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1 Introduction

Using assertions is nowadays a common programming practice, and especially in the case of
what is known as ’programming by contract’ [13, 14], where they can be used e.g. to formulate
pre- and postconditions of methods as well as invariants of loops.

Algorithm 1: Euclid’s algorithm for finding the greatest common divisor of two nonnegative
integers

1 function Euclid (a, b);
Input : Two nonnegative integers a and b
Output: ged(a, b)
if b = 0 then
| return a;
else
| return Euclid(b,a mod b);
end

o a A~ WOWN

Assertions in Java [15] are used for finding errors in an implementation at run-time during the
test-phase of the development phase. If the condition in an assert statement is evaluated to false
during program execution, an AssertionException is thrown.

During the same phase, testers often use automated test-case generators to obtain test suites
that help to find errors in the program. The goal of our work is to use these same automated
test-case generators for detecting assertion violations. Observe that, in contrast to model check-
ing, automated test-case generators are not complete and thus our proposal may miss possible
assertion violations, but as our experiments show it works quite well in practice and is helpful
as a first approach during program development before using model checking [17] once the soft-
ware is finished. The overhead of an automated test-case generator is smaller than for full model
checking, since data and/or control coverage criteria known from testing are used as a heuristic to
reduce the search space. However, finding an input for a method m() that falsifies some assertion
in the body of m() is not enough. For instance, in the case of preconditions it is important to
observe whether the methods calling m() ensure that the call arguments satisfy the precondition.
Thus, we extend the proposal to indirect calls' of these methods (up to a fixed level of indirection),
allowing checking the assertions in the context of the whole program.

In order to fulfill these goals we propose a technique based on a source-to-source transforma-
tion that converts the assertions into if statements and changes the return type of methods to
represent the path of calls leading to an assertion violation as well as the normal results of the
original program. Converting the assertions into a program control-flow statement is very useful
for white-box, path-oriented test-case generators, which determine the program paths leading to
some selected statement and then generate input data to traverse such a path (see [2] for a recent
survey on the different types of test-case generators). Thus, our transformation allows this kind of
generators to include the assertion conditions into the sets of paths to be covered.

The origins of our idea can be traced back to the work [11] which has given rise to the so called
assertion-based software testing technique. In particular this work can be included in what has
been called testability transformation [8], which aims to improve the ability of a given test gen-
eration method to generate test cases for the original program. An important difference of our
proposal with respect to other works such as [3] is that instead of developing a specific test-case
generator we propose a simple transformation that allows general purpose test-case generators
to look for input data invalidating assertions.

"1f in the body of method m there is a call to mo, then we we say that m calls mo directly. If ma calls m3 directly and
m; calls my directly or indirectly, then we say that m; calls m3 indirectly.
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The next section presents a running example and introduces some basic concepts. Section 3
presents the program transformation, while Section 4 sketches a possible solution to the problem
of inheritance. Section 5 shows by means of experiments how two existing white-box, path-
oriented test-case generators benefit from this transformation. Finally, Section 6 presents our
conclusions.

2 Conditions, Assertions, and Automated Test-Case Genera-
tion

Java assertions allow to ensure at runtime (when executed with the right option) that the program
state fulfills certain restrictions. They can be used to formulate e.g. preconditions and postcondi-
tions of methods and invariants of loops. Fig. 1 presents two Java classes:

- Sqrt includes a method sqrt that computes the square root based on Newton’s algorithm. The
method uses an assertion which ensures that the computation makes progress. However the
method contains an error: the statement a1 = a+r/a/2.0; should be a1 = (a+r/a)/2.0;. This
error provokes a violation of the assertion for any input value different from 0.0.

- Circle represents a circle which has the area as its only attribute. Method getRadius obtains
the radius employing method Sqrt.sqrt to compute the square root. The method includes an
assertion checking whether the area is a non-negative number.

Thus, Circle.getRadius will raise an assertion exception if the area is negative, but also if the
area is positive due to an error in Sqrt.sqrt, which causes a violation of the assertion in this
method.

Our idea is to use a test-case generator to detect possible violations of these assertions. A test-
case generator is typically based on some heuristic which reduces its search space dramatically.
Often it tries to achieve a high coverage of the control and/or data flow. In the sqrt example in
Fig. 1, the tool would try to find test cases covering all edges in the control-flow graph and all
so-called def-use chains, i.e. pairs of program locations, where a value is defined and where this
value is used. E.g. in method sqrt the def-use chains for variable a1 are (ignoring the assertion)
the following pairs of line numbers (5,6), (7,11), (7,6), and (7,12).

There are mainly two approaches to test-case generation [2]. One approach is to generate test
inputs randomly (see [12] for an overview). Another approach is to symbolically execute the code
(see e.g. [9, 7, 4]). Inputs are handled as logic variables and at each branching of the control
flow, a constraint is added to some constraint store. A solution of the accumulated constraints
corresponds to a test case leading to the considered path through the code. Backtracking is often
applied in order to consider alternative paths through the code. Some test-case generators offer
hybrid approaches combining search-based techniques and symbolic computation, e.g. EvoSuite
[5], CUTE [16], and DART [6]. EvoSuite generates test-cases also for code with assert conditions.
However, its search-based approach does not always generate test cases exposing assertion
violations. In particular, it has difficulties with indirect calls such as the assertion in Sqrt.sqrt
after a call from Circle.getRadius. A reason is that EvoSuite does not model the call stack.
Thus, the test-cases generated by EvoSuite for Circle.getRadius only expose one of the two
possible violations, namely the one related to a negative area.

There are other test-data generators such as JPet [1] that do not consider assert statements and
thus cannot generate test-cases for them. In the sequel, we present the program transformation
that allows both EvoSuite and JPet to detect both possible assertion violations.



1+ public class Sqrt { ?

2 static double eps = 0.00001; al =r+eps
3

4 public double sqrt(double r){ a:l'al

5 double a, al = r + eps;

6 do { a = afl; al = a+r/a/2.0
7 al = a+r/a/2.0; //erroneous!

8 assert a==1.0 ||

9 (a1>1.0 ? al < a

10 al > a);}

1 while (Math.abs(a — al) >= eps);

12 return at;
return al

w )}
i1

public class Circle {
double area;

Circle (double area) {this.area = area; }

public double getRadius() {
assert area>=0;
return Sqrt.sqrt(area/Math.Pl); }}

© N o O AW N =

Figure 1:  Java method sqrt, corresponding control-flow graph, and class Circle.

3 Program Transformation

We start defining the subset of Java considered in this work.

3.1 Java Syntax

In order to simplify this presentation we limit ourselves to the subset of Java defined in Table 1.
This subset is inspired by the work of [10]. Symbols e, €1, ..., indicate arbitrary expressions, b,
b1 ..., indicate blocks, and s, si, ..., indicate sentences. Observe that we assume that variable
declarations are introduced at the beginning of blocks, although for simplicity we often omit the
block delimiters ‘{’ and ‘}’. A Java method is defined by its name, a sequence of arguments with
their types, a result type, and a body defined by a block. The table also indicates if the construction
is considered an expression and/or a statement.

The table shows that some expressions e can contain subexpressions ¢’. A position p in an
expression e is represented by a sequence of natural numbers that identifies a subexpression
of e. The notation e, denotes the subexpression of e found at position p. For instance, given
e = (new C(4,5)).m(6,7), we have e|;» = (new C(4,5)),, = 5, since e is a method call, the
position 1 stands for its first subexpression ¢/ = new C(4,5) and the second subexpression of ¢’
is 5. Given two positions p, p’ of the same expression, we say the p < p’ if p is a prefix of p’ or
if p <pEx p’ with <pgx the lexicographic order. For instance 1 < 1.2 < 2 < 2.1 (1 prefix of 1.2,
1.2 <pEx 2, and 2 prefix of 2.1).

For the sake of simplicity we consider the application of a constructor (via the new operator) as a
method call. A method call that does not include properly another method call as subexpression
is called innermost. Let e be an expression and ¢’ = ¢, an innermost method call. Then, ¢’ is
called leftmost if every innermost method call ¢” = ¢, with p # p’ verifies p < p'.



Description Syntax Expr. Stat.
creation of new objects new C(er, ...,en) yes no
casting (C) e yes no
literal values k yes no
binary operation €1 op e yes no
variable access varName yes no
attribute access e.x yes no
method call e.M(er,...,en) yes(*) yes(**)
variable assignment vaName = e no yes
attribute assignment e.x = e no yes
conditional statements if (e) by else by no yes
while loop while(e;) b) no yes
catching blocks try by catch(C V) b no yes
return statements return e no yes
assertions assert e no yes
block {8155 Sn3} no yes
block with local var. decl. {T V; s1; ...; sn} no yes

(*) Method calls are expressions if the return type is different from void
(**) Method calls are statements when they are not contained in another expression

Table 1: Java subset

Statement in program P:
double radius = (new Circle(400.5)).getRadius ();

Flattened program statement in P¥":
Circle aux;

aux = new Circle (400.5);
double radius;

radius = aux.getRadius ();

Figure 2: Flattening an expression

In the statement example in Fig. 2 the underlined expression is a leftmost innermost method call.
The idea behind this concept is that a leftmost innermost expression can be evaluated in advance
because it is not part of another method call and it does not depend on other method calls of the
same expression due to the Java evaluation order.

The minimal statement of an expression e is a statement s that contains e and such that there is
no statement s’ such that s contains s’ and s’ contains e.

Observe that in Table 1 neither variable nor field assignments are allowed as part of expressions.
This corresponds to the following assumption:

Assumption 1 A/l the assignments in the program are statements.

Using assignments as part of expressions is usually considered a very bad programming practice.
Anyway, it is possible to eliminate these expressions by introducing auxiliary variables. We omit
the corresponding transformation for the sake of simplicity.



1 Let B be the body of a method and let e = 0.M (es) be an expression in B such that:
1. eis a leftmost-innermost method call, and M is a user defined method

2. eis not the right-hand side of a variable assignment
3. eis not a statement

Let T be the type of e. Finally, let s be the minimal statement associated with e and let V' be
a new variable name. Then, the following case distinction applies:

1. sis awhile statement, thatis s =while(e;) {eq}.
In this case e is a subexpression of e;, and the flattening of e is obtained replacing s by:

Istlisting
{ TV,
V=ge;
while (e;[e—V]) {
€2,
V=e; } }

where the notation e; [e — V] stands for the replacement of e by V' in e;.

2. sis not a while statement.
Then, the flattening of s is defined as

Istlisting

{ 1TV
V=ge;
s[e—V]; }

3.2 Flattening

Before applying the transformation, the Java program needs to be flatfened. The idea of this step
is to extract each nested method call and assign its result to a new variable without affecting the
Java evaluation order.

This process is repeated recursively, until no method call needs to be transformed. Then the
program obtained is called the flattened version of P and is represented by P in the rest of the
paper. The second part of Fig. 2 shows the flattening of a statement in our running example.

3.3 Program Transformation

The idea of the following program transformation is to instrument the code in order to obtain
special output values that represent possible violations of assertion conditions.

In our case the instrumented methods employ the class MayBe<T> of Fig. 3. The overall idea is
that a method returning a value of type T in the original code returns a value of type MayBe<T> in
the instrumented code. MayBe<T> is in fact an abstract class with two subclasses, Value<T> and
CondError (Fig. 4). Value<T> represents a value with the same type as in the original code, and
it is used via method MayBe. createValue whenever no assertion violation has been found. If an
assertion condition is not satisfied, a CondError value is returned. There are two possibilities:
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public abstract class MayBe<T> {
public static class Value<T> extends MayBe<T> {//— Fig. 4}
public static class CondError<T> extends MayBe<T> {//— Fig. 4}

// did the method return a normal value (no violation)?
abstract public boolean isValue ();

// value returned by the method.
abstract public T getValue();

// No condition violation detected. Return the same value
// as before the instrumentation.
public static <K> MayBe<K> createValue (K value) {

return new Value<K>(value); }

// an assert condition is not verified
public static <T> MayBe<T> generateError(String method,
int position) {
return new CondError<T>(new Call (method, position));}

// method calls another method whose precondition or
// postcondition is not satisfied.
public static <T,S> MayBe<T> propagateError(String method,
int position, MayBe<S> error){
return new CondError<T>(new Call(method, position),
(CondError<S>) error);}

Figure 3:  Class MayBe<T>: new result type for instrumented methods.

- The assertion is in the same method. Suppose it is the i-th assertion in the body of the method
following the textual order. In this case, the method returns MayBe . generateError (name,i) ; with
name the method name. The purpose of method generateError is to create a new CondError
object. Observe that the constructor of CondError receives as parameter a Call object. This
object represents the point where a condition is not verified, and it is defined by the parameters
already mentioned: the name of the method, and the position i.

- The method detects that an assertion violation has occurred indirectly through the i-th method
call in its body. Then, the method needs to extend the path and propagate the error. This is done
using a call propagateError (name,i,error), where error is the value to propagate. In Fig. 4
we can observe that the corresponding constructor of CondError adds the new call to the path,
represented in our implementation by a list.

The transformation takes as parameters a program P and a parameter not discussed so far: the
level of the transformation. This parameter is determined by the user and indicates the maximum
depth of the instrumentation. If level = 0 then only the methods including assertions are instru-
mented. This means that the tests will be obtained independently of the method calls performed
in the rest of the program. If level = 1, then all the methods that include a call to a method with
assertions are also instrumented, checking if there is an indirect condition violation and thus a
propagating of the error is required. Greater values for [evel enable more levels of indirection, and
thus allow to find errors occurring in a more specific program context.

The algorithm can be summarized as follows:

1. Flatten P delivering P¥" as explained in Subsection 3.2.

2. Make a copy of each of the methods to instrument by replacing the result type by MayBe, as



public static class Value<T> extends MayBe<T> {
T value;

public Value(T value) { this.value = value; }

@Override

public boolean isValue() {return true; }
@Override

public T getValue() {return value;} }

public static class CondError<T> extends MayBe<T> {
private List<Call> callStack;

public CondError(Call newElement) {
this.callStack = new ArrayList<Call >();
this.callStack.add(newElement); }

public <S> CondError(Call newElement, CondError<S> other) {
this.callStack = new ArrayList<Call>(other.callStack);
this.callStack.add(newElement); }

public List<Call> getCallStack() { return callStack; }

@Override

public boolean isValue() { return false; }
@Override

public T getValue() { return null; } }

Figure 4:  Classes Value<T> and CondError<T>

11

1

2 Input: P, a Java Program verifying Assumption 1 (all the assignments in the program are
statements), and an integer level > 0.

3 Output: a transformed program PT
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described in Algorithm ??. Call the new program PC¢.

3. Replace assertions in P by new code that generates an error if the assertion condition is not
met, as explained in Algorithm ??. This produces a new program P, and a list of methods L.

4. For k=1 to level: apply Algorithm ?? to P, P,_1, and L;_;. Call the resulting program P, and
list Ly, respectively.

5. Apply your favourite automatic test-data generator to obtain test cases for the methods in
Lieye; With respect to Pi,;- LoOOK for the test cases that produce CondError values. Executing
the test case with respect to the original program P produces an assertion violation and thus the
associated exception displays the trace of method calls that lead to the error.

Now we need to introduce algorithms ??, ?? and ??.

We assume as convention that it is possible to generate a new method name M’ and a new
attribute name M# given a method name M. Moreover, we assume that the mapping between
‘old’ and ‘new’ names is one-to-one, which allows to extract name M both from M’ and from M4,

Input: a flat Java program P¥" verifying Assumption 1.
Output: a transformed program P¢ with copies of the methods.

1. P¢ = pF.
2. For each method (not constructor) C.M in P¥ with result type 7T":

(@) Include in class C of P¢ a new method C.M’ with the same body and arguments as C.M,
but with return type MayBe<T>

(b) Replace each statement return exp; by: return MayBe.createValue(exp);
3. For each constructor C.M in P:

(a) Include in the definition of class C of program P¢ a new static attribute M 4:

static MayBe<C> M*;

(b) Create a new method C.M’ as a copy of C. M with the same arguments args as the definition
of C. M, but with return type MayBe<C> and body:

MayBe<C> result=null;
M4 = null;
C constResult = new C(args);

// if no assertion has been falsified
if (M4 !=null)
result = M4;
else
result = MayBe.createValue (constResult);
return result;

Algorithm ?? copies the class methods, generating new methods M’ for checking the assertions.
This is done because we prefer to modify a copy of the method, ensuring that the change does
not affect the rest of the program. Method M’ returns the same value as M wrapped by a MayBe
object.
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Observe that in the case of constructors we cannot modify the output type because it is implicit.
Instead, we include a new attribute M“, used by the constructor, to communicate any violation of
an assertion. The new method calls the constructor and checks if there is an assertion violation
(M# 1=null), returning the new value as output result. If on the contrary M4 is null then no
assertion violation has been detected and the constructed object is returned wrapped by a MayBe
object.

The next step or the transformation handles assert violations in the body of methods:

Input: P¢ obtained from the previous algorithm.
Output: — Py, a transformed program

— Ly, a list of methods in the transformed program

1. Py=P, Lo =]
2. For each method C.M including an assertion:

(a) Lo = [C.M'|Lg], being M’ the new method name obtained from M
(b) If C.M is a method with return type T', not a constructor, replace in C.M’ each statement
assert exp; by:

if (!exp) return MayBe.generateError("C.M”,i);

with 7 the ordinal of the assertion counting the assertions in the method body in textual order.
(c) If C.M is a constructor, replace in C.M each statement assert exp; by:

if (lexp) M4 = MayBe.generateError(’C.M",i);

with 7 as in the case of a non-constructor.

In our running example Ly = [Sqrt.srqtCopy, Circle.getRadiusCopyl, which are the new names
introduced by our transformation for the methods with assertions. Finally, the last transformation
focuses on indirect calls. The input list L contains the names of all the new methods already
included in the program. If L contains a method call C.M’, then the algorithm looks for methods
D.L that include calls of the form C.M (args). The call is replaced by a call to C.M’ and the new
value is returned. A technical detail is that in the new iteration we keep the input methods that
have no more calls, although they do not reach the level of indirection required. The level must be
understood as a maximum.

Input: — P, a Java flat Program verifying Assumption 1
— P,_1, the program obtained in the previous phase

— Alist L;,_, of method names in P,_;
Output: — Py, a transformed program

— L;, alist of methods in the P,

1. Let P.=P. 1, L =L
2. For each method D.L in P including a call z = C.M with C.M such that C.M’ isin L;_:

(a) Let: be the ordinal of the method call in the method body and y a new variable name’
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public class Sqrt {

static double eps = 0.000001;

public static MayBe<Double> sqrtCopy (double r){

double a, alt = 1.0;

a = aft;

al = a+r/a/2.0;

double aux = Math.abs(a—at);
while (aux >= eps);{

a = atl;

al = a+r/a/2.0;

if (!(a==1.0 || (a1>1.0 ? al<a : ail>a)))
return MayBe.generateError(”sqrt”, 2);

aux = Math.abs(a—-atl); }
return MayBe.createValue (al);

b}

public class Circle {
double area;

Circle (double area) {this.area = area;}

public MayBe<Double> getRadius () {

if (!(area>=0))
return MayBe.generateError(”getRadius”, 1);
MayBe<Double> r = Sqrt.sqrtCopy(area/Math.Pl);
if (!r.isValue())
return MayBe.propagateError(”getRadius”, 2, r);
return r;

P}

Figure 5:  Transformation of the running Example

(0)
(©)
(d)

If C.M'’isin L, then remove it from L.
Ly =[D.L'|Ly]

If D.L is a method of type T, not a constructor then replace in D.M’ the selected call to
x=C.M by:

MayBe<T> y = C.M’;
if (ly.isValue())

return MayBe.propagateError(”D.L”,i,y);
X = y.getValue();

If D.L is a constructor, then let 2’ be a new variable name. Replace in the constructor D.L
the selected call to x = C.M by:

MayBe<T> y = C.M’;
if (ly.isValue())

M#4 = MayBe.propagateError("D.L”,i,y);
X = y.getValue () ;

where M4 is the static variable associated to the constructor and introduced in Algorithm
??.

In our example we have L, = L since the only indirect call is by means of Circle.getRadiusCopy,
but this method is already in the list. In fact, L, = L for every k£ > 0.

The transformation of our running example can be found in Fig. 5. It can be observed that in
practice the methods not related directly nor indirectly to assertion do not need to be modified.
This is the case of the constructor of Circle.
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4 Inheritance

Inheritance poses a new interesting challenge to our pro- Class A
posal. Consider the hierarchy shown in Fig. 6, in which int 20
we assume that the implementation of m() in B contains

. N . Class B

an assertion, and hence, it is transformed according to coverride int m()
Algorithm ??. If there are neither assertions nor calls to ‘ ‘
B.m() in the remaining classes of the hierarchy, it seems Class C Class D
that there is no further transformations to apply. However, Goverride int m()
assume the following method: ? 7

A Class E Class F

int foo(A a) {return a.m();} coverride int m()

If we have the call foo(new B(..)) then it becomes ap-

parent that foo () can raise an assertion due to dynamic Figure 6:  Inheritance example
dispatching, because the call a.m() corresponds in this

context to a call to B.m(). Thus, in order to detect this possible assertion violation, foo() needs
to be transformed by introducing a fooCopy () method containing a call to a.mCopy () in its body.
In turn, this implies that class A must contain a method mCopy () as well. Therefore, we create a
method mCopy () in A with the following implementation:

MayBe<Integer> mCopy() {return MayBe.createValue(m());}

which wraps the result of m() into a MayBe value. This wrapper implementation must be replicated
in classes C and F as well, since they also override m().

In general whenever we create a copy of a method C.m(), we have to create a copy method with
the wrapper implementation in the class where m() is defined for the first time in the class hierar-
chy, and in each descendant C’ of C overriding m() unless there is another class between € and
C’ in the hierarchy which also overrides m(), or C’ already has an mCopy () method (e.g. because
C’.m contains another assertion). In the example of Fig. 6 this means that we need to create
additional mCopy () methods in classes A, C and F. An obvious limitation is when we introduce
an assertion in methods defined in a library class such as Object (for instance when overriding
method toString), since we cannot introduce new methods in these classes. Fortunately, in-
troducing assertions when overriding library methods is quite unusual. A possible improvement,
still under development, is to look in advance for polymorphic calls. For instance maybe method
foo () is never called with arguments of type C in the program and there is no need of transforming
this class.

5 Experiments

We observed the effects of the transformation by means of experiments, including the running
example shown above, the implementation of the binary tree data structure, Kruskal's algo-
rithm, the computation of the mergesort method, a constructed example with nested if-statements
called Numeric, an example representing a blood donation scenario BloodDonor and two big-
ger examples, namely a self devised Library system which allows customers to lend and re-
turn books and the 6500 lines of code of the package java.util.logging of the Java Development
Kit 6 (JDK). In all the cases the transformation has been applied with level infinite (apply the
transformation until a fixed point is reached). In the next step, we have evaluated the exam-
ples with different test-case generators with and without our level=1 program transformation.
We have developed a prototype that performs this transformation automatically. It can be found
at https://github.com/wwu-ucm/assert-transformer, whereas the aforementioned examples
can be found at https://github. com/wwu-ucm/examples.
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EvoSuite JPet
Method Total || P | PT p | PT
Circle.getRadius 2 1 2 0 2
BloodDonor.canGiveBlood 2 0 2 0 2
TestTree.insertAndFind 2 0 2 0 2
Kruskal 1 1 1 0 1
Numeric.foo 2 1 2 0 2
TestLibrary.test* 5 0 5 0 5
MergeSort. TestMergeSort 2 0 1 0 1
java.util.logging.* 5 0 2 - -

Table 2: Detecting assertion violations.

Binary Blood Kruskal Library | MergeSort | Numeric | StdDev Circle

Tree Donor
PP PP P P! PPT|P P PP PP P P!
EvoSuite | 90 | 95 {83 | 91 | 95| 100 |63 | 92 |82 | 82 |76 | 82 |71 | 71 |80 | 100
JPet - 18 | - |99 | - |49 | - ]20 | - 87 - | 8| —-1|74| - | 100
Table 3: Control and data-flow coverage in percent.

We have used two test-case generators, JPet and EvoSuite, for exposing possible assertion vi-
olations. First of all, we can note that our approach works. In our experiments, all but one
possible assertion violation could be detected. Moreover, we can note that additionally our pro-
gram transformation typically improves the detection rate, as can be seen in Table 2. In this
table, column Total displays for each example the number of possible assertion violations that
can be raised for the method. Column P shows the number of detected assertion violations us-
ing the test-case generator and the original program, while column P7 displays the number of
detected assertion violations after applying the transformation. For instance in our running ex-
ample, Circle.getRadius can raise the two assertion violations explained in Section 2. Without
the transformation, only one assertion violation is found by EvoSuite. Notice that JPet cannot find
any assertion violation without our transformation, since it does not support assertions. Thus, our
transformation is essential for tools that do not support assertions, such as JPet. With the trans-
formation, EvoSuite correctly detects both assertion violations. An improvement in the assertion
violation detection rate is observed for all examples.

Also tools that support assertions benefit from our program transformation, since it makes the
control flow more explicit than the usual assertion-violation exceptions. This helps the test-case
generators to reach a higher coverage as can be seen in Table 3. The dashes in the JPet row
indicate that JPet does not support assertions and hence cannot be used to detect assertion
violations in the untransformed program. Our program transformation often only requires a few
seconds and even for larger programs such as the JDK 6 logging package the transformation fin-
ishes in 18.2 seconds. The runtime of our analysis depends on the employed test-case generator
and the considered example. It can range from a few seconds to several minutes.
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6 Conclusions

We have presented an approach to use test-case generators for exposing possible assertion vio-
lations in Java programs. Our approach is a compromise between the usual detection of assertion
violations at runtime and the use of a full model checker. Since test-case generators are guided by
heuristics such as control- and data-flow coverage, they have to consider a much smaller search
space than a model checker and can hence deliver results much more quickly. If the coverage is
high, the analysis is nevertheless quite accurate and useful in practice; in particular in situations,
where a model checker would require too much time. We tried to use the model checker Java
Pathfinder [18] to our examples, but we had to give up, since this tool was too time consuming or
stopped because of a lack of memory.

Additionally, we have developed a program transformation which replaces assertions by compu-
tations which explicitly propagate violation information through an ordinary computation involving
nested method calls. The result of a computation is encapsulated in an object. The type of this
object indicates whether the computation was successful or whether it caused an assertion viola-
tion. In case of a violation, our transformation makes the control flow more explicit than the usual
assertion-violation exceptions. This helps the test-case generators to reach a higher coverage
of the code and enables more assertion violations to be exposed and detected. Additionally, the
transformation allows to use test-case generators such as JPet which do not support assertions.

We have presented some experimental results demonstrating that our approach helps indeed to
expose assertion violations and that our program transformation improves the detection rate.

Although our approach accounts for the call path that leads to an assertion violation, this path is
represented as a chain of object references, so some test case generators might not be able to
recreate it in their generated tests. We are studying an alternative transformation that represents
the call path in terms of basic Java data types. Another subject of future work is to use the
information provided by a dependency graph of method calls in order to determine the maximum
call depth level in which the transformation can be applied.
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