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Abstract

The term Big Data has become pervasive in recent years as smart phones, televisions, washing
machines, refrigerators, smart meters, diverse sensors, eyeglasses and even clothes connect
to the Internet. However, their generated data is worthless without information retrieval through
data analytics. As Big Data is too big for a single person to investigate, appropriate technologies
are being used. Unfortunately, there is not one solution but a large variety of different tools,
each of them with other functionalities, properties and characteristics. Especially small and mid-
sized companies have a hard time to keep track as this requires time, skills, money, and specific
knowledge which result in high entrance barriers for Big Data utilization. This papers aims to
reduce these barriers by explaining and structuring different classes of technologies and basic
criteria for proper technology selection. It proposes a framework that guides especially small and
mid-sized companies through a suitable selection process that can serve as a basis for further
advances.
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1 Introduction

The Big Data Era which started a couple of years ago has meanwhile seen an abundance of tools
for processing and managing data and its applications, be it for searching, stream processing,
or sentiment and text analysis, to mention just a few. Most of these software tools are open-
source and can hence be employed by anybody who feels capable of arranging them into an
appropriate solution architecture for the problem at hand. However, the sheer mass of tools often
makes it difficult to come up with a reasonable selection, and beyond that with an organization
or arrangement of the tools that can serve the given application well. This paper presents an
approach to technology selection for big data and analytical applications that can considerably
" of tools that are available.

ease the task of navigating the ™jungle

Data has become the most important asset for companies [b6]. It is the new oil [IZ3] that lubri-
cates business processes and helps companies evolve towards data-driven decision making [30].
Being in line with labor, natural resources and capital, Big Data has become the next important
production factor [30] [97]. At its essence, it is all about predictions and simulations [65]. Face-
book predicts friends, Amazon predicts purchases, government agencies predict crimes as well
as terrorist attacks, and Netflix predicts movies. Big Data analytics even enables to forecast peo-
ple’s behavior and emotional moods [30], as some predictions aim at customer personalization,
satisfaction [62], and even online dating [14].

This vast amount of data requires new technologies and mechanisms for storage, processing,
management, and analysis. It is commonly accepted that Big Data is too large, fast, and diverse
for traditional Relational Database Management Systems (RDBMSs) [39]. Hence, new technolo-
gies are required that include a wide range of novel database systems, file systems, programming
paradigms and languages, and machine learning tools, among other components [77]. According
to DEMCHENKO, DE LAAT, and MEMBREY [B5], there is no comprehensive analysis of such emerg-
ing Big Data technologies in the literature yet [43]. Instead, most discussions are happening in
blogs between contributors and early adopters of open source solutions.

As a consequence, Big Data concepts and tools and their implications for technology selection
or system architectures are still poorly understood [64], and traditional Business Intelligence (Bl)
tools for Online Analytical Processing (OLAP), such as RDBMS, are still being used for struc-
tured data and have gained capabilities to deal with larger volumes of data. [41] has identified
the need for a structured technology selection approach in the context of the complexity of this
tool landscape. The proposed Goal-oriented Business Intelligence Architecture (GOBIA) method
emphasizes the selection of technologies a key to transform business needs into customized ana-
lytics architectures. However, a specific process has not been proposed yet [41]. MARR proposes
a framework for organizational change towards Big Data, driven by strategy, but does not focus
on specific technologies [63]. On the other hand, companies are increasingly confused with hun-
dreds of different available tools and unsure about how to build an analytics architecture for their
needs. In fact, building a suitable infrastructure comes with significant integration challenges, as
each technology has its own functionality, performance, and scalability strengths and weaknesses
[B8].

This paper aims to develop artifacts that can aid in a structured technology selection process
for customized analytics architectures in the Big Data era and is based on [B1]. Specifically, it
develops a guideline for technology selection and a regulatory framework that structures current
technologies into distinct classes for a better overview. Overall, it explains essential selection
criteria and technology differentiating dimensions. The resulting framework can also be used to
complement existing approaches such as the aforementioned GOBIA method.

The remainder of this paper is structured as follows. First, the layered reference framework as
a means to structure technology is outlined in Section B. Section B introduces the technology
selection framework and describes its process-based approach. Section @ illustrates technology
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selection using an application scenario. Finally, the paper concludes with Section B.

2 Layered Reference Framework

This section introduces a layered reference framework that can be used to ease the classification
and assessment of new technology. It maps technologies to different service layers and serves
as a guide for selecting suitable technology mixes for given use cases.” It is the foundation of
the technology selection framework to be presented in Section B. As such, it inherits Big Data
technologies at different service layers for data generation, acquisition, storage, processing, and
analytics [35].

|:> Data Analytics
Data Data Acquisition
Generation e
(Pre-) Processing
<;> Data Storage

Figure 1:  Adaptive Big Data Value Chain (based on [30], [29], and [23]).

A common way to visualize the process of value generation is known as the Big Data value chain
(see Figure ). It consists of four sequential phases [30] [49]: data generation, data acquisition,
data storage, and data analytics. The first four layers of the reference framework correspond to
the process steps of this Big Data value chain, while the top-level one accounts for its primary
purpose to deliver valuable results.

The resulting layered reference framework is illustrated in Figure B. Layer elements are ordered
with increasing volume, variety, and velocity from right to left. While traditional Bl technologies
are indicated in blue, components associated with advanced analytics are colored red. However,
the transition between Bl and advanced analytics is smooth, as components sometimes belong
to both groups, depending on the use case.

While advanced analytics requires input of data scientists [B], traditional Bl technologies are usu-
ally set up by data analysts without profound mathematical knowledge [88]. Thus, the former
usually requires good programming skills and knowledge on analytical tools using API, REPL,
and CLI while the latter can often be employed using GUI or GWFU. This corresponds to the easy
of use structuring from left to right.

The layered reference framework does not visualize single technologies, but classifies them by
their type into different structural elements such as Distributed File Systems and OLAP tools.
As there are lots of tools and projects arranged in each of these elements, there is not a single
solution for a given use case [b8, p. 41].

' The usage of a layered architecture with a service hierarchy is suggested by FEKETE and VOSSEN [&1] in their research
on the GOBIA method.
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Figure 2:  The Layered Reference Framework.
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2.1 Data Generation Layer

The data generation layer deals with different types of data sources. The main differentiating
dimensions are variety and velocity. While velocity differentiates between data-in-motion and
data-at-rest [42], variety determines between structured, semi-structured, and unstructured data.

Table 1: Layered Reference Framework — Data Generation Layer.

Layer Element Examples

Structured Data Tabular, transactional, inventory, and financial data
Semi-structured Data XML files, JSON documents, e-mails

Unstructured Data Text, images, videos, and log files

Structured Streaming Data High-frequency transactional and financial data
Semi-structured Streaming Data  Sensor and event data, Twitter streams

Unstructured Streaming Data Log files for security, audio, video, and live surveillance

Data-in-motion summarizes all data that is constantly generated at low and high velocities, also
known under the umbrella term streaming data. It describes events that need to be analyzed
as they happen. Examples include social media streams (e.g., Twitter APls such as Firehose[d],
Facebook® or Xing®), sensor data, and log files for security access, as well as multimedia streams
from music and video platforms and surveillance cameras. Other examples include high-frequency
financial or transactional structured data streams. The counterpart of data-in-motion is data-at-
rest [82]. This term summarizes historically generated data at fixed locations with no velocity. It
includes all data that needs to be stored prior to analysis.

The distinction between data-in-motion and data-at-rest influences technology selection. Busi-
ness use cases usually put requirements on response times and latency of analysis results. For
instance, an earthquake or tsunami warning system is required to provide warnings in real-time,
not on the next business day [27]. Consequently, the velocity of data generation and its required
analysis latency have a reasonable impact on the selection of suitable technology.

Notably, more than 95% of all data is unstructured or semi-structured and thus requires additional
preprocessing [44]. This work also uses the term multi-structured data as a generalization of
semi-structured and unstructured data. All of these data can be data-in-motion (streaming data) or
data-at-rest, depending on the use case at hand. The share of multi-structured data is constantly
growing as everyday contents such as video, images, documents, log files, and e-mails contribute
to these groups [T7]. The resulting data is diverse as it includes unstructured text, logs, scientific
data, pictures, voice and video records as well as sometimes metadata [66]. However, currently,
structured input data has still a major role in analytical tasks, even with Big Data (e.g., cf. [43]).

2.2 Data Acquisition Layer

The data acquisition layer deals with technologies for an ingestion of data into Big Data infras-
tructures [66]. The main differentiating dimension is velocity. It distinguishes between batch and
real-time ingestion. Real-time ingestion is sub-divided into messaging systems and Complex
Event Processing (CEP) engines, while batch ingestion includes traditional Extract-Transform-
Load (ETL) data integration tools. Sample technologies for the different layer elements are given

2 See https://developers.facebook.com/docs/graph-api for further information.
3 See https://dev.xing.com/docs/resources
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in Table B.
Table 2: Layered Reference Framework — Data Acquisition Layer.
Layer Element Exemplary Technologies

Data Integration Tools  Apache Sqoop (attp://sqoop.apache.org/)
Microsoft SQL Server Integration Services
Pentaho Data Integration
Talend Open Studio for Big Data
Messaging Systems Apache Kafka (attp://kafka.apache.org/)
CEP Engines Apache Flume (http://flume.apache.org/)
Apache Storm (http://storm.apache.org/)

Batch ingestion has been done for decades in traditional Business Intelligence and Analytics
(BI&A) environments (cf. [B4]), is very well researched (cf. [37]) and is widely understood. Usually,
data flows like ETL, Extract-Load-Transform (ELT), or Extract-Transform-Load-Transform (ETLT)
are specified (cf. [66, B3]). Which of these order variations to use is determined by the use case
and its data characteristics [42]. Most traditional tools such as Microsoft SQL Server Integration
Services (SSIS) and Pentaho Data Integration (PDI) allow integration of both, structured and multi-
structured content, between traditional file systems and RDBMSs. Connections to new, distributed
types of Big Data storages such as Hadoop Distributed File System (HDFS) @ and HBase [P] can
be established using new technologies such as Apache Sqoop [7].

Real-time ingestion of data-in-motion differs severly from batch-processing and pushes process-
ing and analytics down to the acquisition layer such that the data is essentially processed before
it is stored [42]. This is done because it is not reasonable to store all incoming events, due to the
velocity of up to millions of events per second and the associated large data volume [286].

Supporting technologies for real-time ingestion include CEP engines that search streams of data
for predefined events and compute results on the fly as they arrive.f Such systems allow essen-
tial operations such as aggregation, union, joins, and filtering on input streams to perform prede-
fined analysis, automatic decisions and actions in real-time. By filtering events prior to ingestion,
only the information needed is assessed, analyzed, and eventually stored [42] [33]. Typical use
cases are early warning systems [19], fraud detection (e.g., large withdrawal from bank accounts),
mouse clicks on website, security systems, and the assessment of new tweets. In general, this
is used when the system must decide immediately whether to disregard an event or perform an
action as the situation does not allow to wait for human interaction [42].

In between CEP engines and traditional batch-oriented ETL tools are messaging systems. They
do not provide functionality for processing of data streams but rather serve as a messaging queue
between systems to ensure that no message gets lost. Such tools are oftentimes used to enqueue
events and messages from external sources before they are processed by a CEP engine. They
furthermore allow communication using a publish-subscribe paradigm between loosely coupled
parts of a system [38].

2.3 Data Storage Layer

The data storage layer deals with technologies for persistent data storage in Big Data infrastruc-
tures. The main differentiating dimensions are volume and variety. Variety distinguishes between

4 See [BB, 0]
5 This can be compared with an ETL pipeline that has near-zero latency [33].
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different types of storages, namely distributed file systems, Not-Only SQL (NoSQL) data stores,
and RDBMSs. These are ordered with increasing data structure flexibility from right to left within
the layered reference framework. While structured data is well supported by RDBMSs, multi-
structured data requires NoSQL or distributed file systems. NoSQL data stores are particularly
sub-divided into key-value, document, graph-based and column family stores. The expected over-
all data volume determines if horizontal or vertical scaling systems are required [79]. In case of
horizontal scaling (see [79, B0O]) for multi-structured data, the maximum supported data volume
is used to order NoSQL and distributed file systems with increasing capabilities from right to left.
Exemplary technologies for different layer elements are given in Table B. The ones in brackets are
not explicitly included in the selection framework introduced later, but will be introduced in future
versions (cf. Section B).

Table 3: Layered Reference Framework — Data Storage Layer.
Layer Element Exemplary Technologies

SMP RDBMS Microsoft SQL Server, (MySQL)

MPP RDBMS Greenplum, (Vertica, Teradata)

NoSQL Key-value Store Riak

NoSQL Document Store MongoDB

NoSQL Column-family Stores HBase

NoSQL Graph Databases Neo4J

Distributed File Systems HDFS

RDBMSs can be categorized as Symmetric Multi Processing (SMP) RDBMSs and Massively
Parallel Processing (MPP) RDBMSs [42] [49]. SMP RDBMSs make use of vertical scaling, while
MPP RDBMS scale horizontally (cf. [[Z6]).

MPP RDBMS are best suited for large Data Warehouse (DWH) applications and in-database
analytics, in particular for Big Data environments, while they still exploit the commonly known
and well understood relational data model [42] [49]. This is, among others, due to horizontal
scaling which increases performance and throughput [79] through inter-node parallelism [P2].
Also, they can be combined with traditional OLAP tools.E. However, MPP databases typically
require their own special purpose hardware [42, p. 16] and need specialized linkage [PZ] which
result in higher costs. Examples for MPP databases are Teradata, Netezza, Greenplum, Vertica
and SAP Hana [29] [?8]. MPP RDBMS are designed for structured data, not multi-structured data
[30, @9]. Nevertheless, MPP RDBMSs are still relevant for Big Data, as long as the workload
focusses on structured data.

For multi-structured data, other techniques like NoSQL data stores and distributed file systems are
more promising. The latter usually allow any kind of workloads stored within files [30]. This makes
them most suitable for exploratory analysis, which can be used to extract structure from multi-
structured data, that can be stored and analyzed using other technologies such as MPP RDBMSs
[a2]. Distributed file systems allow multiple clients to access files and directories provided on
several hosts sharing a computer network [68]. A prominent example for such a system is the
HDFS. Key features are automatic data distribution, high availability, fault tolerance, and high
throughput access [16]. It allows to dynamically scale up and down while the system automatically
re-distributes the data [29]. Compared to MPP RDBMSs, HDFS storage is cheap, requires no
licensing costs, and runs on commodity hardware.

In between MPP RDBMSs and distributed file systems are NoSQL data stores. They represent
a new category of database systems that includes four different types: key-value, document,

6 Microsoft SQL Server Analysis Services (SSAS) can for instance directly connect to Teradata. See https://msdn.
microsoft.com/en-us/library/ms175608.aspx for further information.
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and column-family stores as well as graph databases [78, p. 122] [Z3]. Each of them is special-
ized for specific purposes and workloads. Therefore, NoSQL gave rise to the polyglot persis-
tence approach, where different data stores are used depending on situation and workload [75].
Features of NoSQL include low latency, low-cost commodity nodes, and the ability to deal with
multi-structured data [57]. On the one hand, they allow to easily increase performance linearly
with number of nodes. With this, front-end applications can frequently and interactively query the
database with low latency [90]. Yet they lack standards and are reported to have bad analytical
performance [57].

High performance real-time support for read and write operations can be achieved by using in-
memory storage functionality. The key idea is to eliminate slower storages on lower levels of the
storage hierarchy [B0]. In-memory databases load their entire data into memory on startup and
use it as their primary storage to achieve permanent higher velocity and lower latency on read
operations [B0]. Due to their enhanced speed, they enable processing of higher data volumes in
shorter time such that they are most suitable for data-in-motion scenarios (e.g., streaming data
from sensors). In combination with horizontal partitioning, their performance increases almost
linearly to the number of nodes. Overall, databases with in-memory capabilities are highly relevant
in the context of Big Data as they directly address the volume and velocity dimensions of the
original 3Vs (Volume, Variety, and Velocity) [B7].

A survey by KING and MAGOULAS with data analysts and scientists from 2014 [55] reveals that
SQL is used by 42% of the respondents while HDFS is only used by 23%. Similarly, a Jaspersoft
survey shows, that most popular storage systems within enterprises are RDBMS (56%), Mon-
goDB (23%), MPP RDBMSs (14%), and HDFS (12%) [[Z7]. Conclusively, RDBMSs have not been
replaced by other tools. They are still the cornerstone of data analytics, even in the Big Data era.

2.4 Data Processing Layer

This layer includes technologies that are responsible for the execution of data operations such
as read, write, and delete, where the main differentiating dimensions are velocity and variety.
Variety determines between database and file-based processing. While structured data can be
processed using database processing of RDBMSs, multi-structured data is usually stored as files
and processed within distributed file systems or NoSQL stores. File-based approaches are partic-
ularly sub-divided into batch, unified, and stream processing, depending on the velocity require-
ment for first results in descending order. Associated processing technologies are abbreviated as
Batch Processing Engines (BPEs), Unified Processing Engines (UPEs), and Stream Processing
Engines (SPEs) respectively. As the data generation speed must fit the data processing speed
for some applications [29], they must be carefully chosen with regard to the use case at hand.
Exemplary technologies for different layer elements are given in Table B.

Table 4: Layered Reference Framework — Data Processing Layer.

Layer Element Exemplary Technologies

SQL Processing RDBMSs
Batch Processing MapReduce
Unified Processing  Spark
Stream Processing  Storm

A distributed processing engine can be seen as an infrastructure rather than a tool. It is an
enabling technology which can be used or build upon, for instance by analytical tools, which
employ large scale machine learning algorithms. Big Data necessitates the use of distributed
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technologies [T9]. New distributed processing technologies constantly emerge [31].

Database processing utilizes functionalities of underlying databases to perform operations over
data within their repositories [36]. Costly data movement is not necessary. Functionalities includes
typical SQL operations such as joins or aggregations (e.g., Sum) and groupings [36, p. 356].
Some databases also support enhanced functionalities such as regular expressions [36] or user-
defined functions (UDF) [38].

When combined with MPP RDBMSs, database processing is considered even faster and more
efficient than file-based in-memory processing with large datasets [36]. It is therefore a reason-
able choice for the deployment of machine learning algorithms. In contrast, file-based processing
cannot be done with off-the-shelf software [56]. As the data is rarely structured and diverse, it re-
quires custom coding to derive structure and meaningful insights, as in the approaches described
next.

Batch processing is used in situations where the entire data is stored prior to analysis [49]. BPEs
are capable to handle large amounts of data-at-rest. Algorithms divide it into chunks and process
each of them individually on its own machine to generate intermediate results which are eventually
aggregated to a final result. Such execution jobs are predefined by programmers, given to the
system, and executed over a longer period of time. They cannot be adjusted while execution is in
progress. MapReduce [34] is a representative for BPEs.

Stream processing handles high frequency data-in-motion and is used in situations where imme-
diate results are required [31]. Although it is considered challenging to build a real-time streaming
architecture [18], organizations frequently move towards collecting and processing real-time data
[Z7]. Apache Storm [5] is a representative for SPEs.

Unified processing aims to combine the advantages of batch and streaming into a single system
that enables to process both, large amounts of data-at-rest and data-in-motion. UPEs provide a
single programming model for all purposes and use micro-batches to simulate stream processing.
Such systems do not provide real-time but near-real-time. While the former seeks to guarantee
results within application-specific time constraints, the latter does not. Unified processing further-
more aims to provide users with interactive query capabilities and fast answers, even for large
amounts of data-at-rest [16]. Thus, engines in this category employ in-memory storage to bet-
ter support low latency queries and iterative workloads such as machine learning [59]. This is
also denoted as iterative-batch processing [59]. A well-known representative for UPEs is Apache
Spark [4].

2.5 Data Analytics Layer

The data analytics layer comprises technologies responsible for the value generating process of
the adaptive Big Data value chain introduced earlier. Such technologies uncover hidden patterns
and unknown correlations to improve decision making [449] and are a means for implementing Big
Data use cases. Data analytics is differentiated by two dimensions: the type of data analytics and
the generation of machine learning. The former distinguishes (cf. [B&] [B3]) technology by their
support for descriptive (cf. [64, P4, B3]), predictive (cf. [86] [83]), and prescriptive (cf. [BH, B3])
methods, which are eventually condensed to Bl and advanced analytics. Bl analytics focusses on
descriptive analytics (e.g., OLAP), while advanced analytics focusses on predictive and prescrip-
tive analytics [10] [44]. Advanced predictive or prescriptive analyses "typically employ machine
learning (cf. [86] [62] [B6]). Machine learning methods, among others, include [P1] classifica-
tion (cf. [40, BO]), regression (cf. [B6]), topic modelling (cf. [29] [36]), time series analysis (cf.
[B8]), cluster analysis (cf. [38], [32, &0]), association rules (cf. [68] [36]), collaborative filtering
(cf. [84, 14, b0]), and dimensional reduction (cf. [74, BY]). Advanced analytics can be further de-
scribed by a maturity model proposed by AGNEESWARAN [13], that distinguishes analytical tools
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into three generations of machine learning as follows:

1st Generation Machine Learning (1GML) requires the data workload to fit into memory of a
single machine. Such tools are restricted to vertical scaling (cf. Section E23), which is a drawback
when considering Big Data. Tools in this group were usually developed before Hadoop and are
referred to as ftraditional analytical tools. Usually, vendors try to enhance or re-engineer their
product in a way that allows the usage of Big Data. Mostly, connectors are added that allow read
and write operations to HDFS while the analysis is still performed within the tool. Hence data is
exported from storage, analyzed, and later re-imported.?

2nd Generation Machine Learning (2GML) enhances 1GML with capabilities for distributed
processing across Hadoop clusters. In contrast to 1GML, data remains at its location while the
code execution is divided and processed on each required data node in parallel.2 Tools in this
class are denoted as over Hadoop [13]. Many algorithms do not translate easily into MapReduce
[69]. While non-iterative algorithms can be translated into efficiently performing series of MapRe-
duce operations, iterative algorithms such as machine learning cannot. Thus, the expected per-
formance for such workloads is poor.

3rd Generation Machine Learning (3GML) enhances 2GML with capabilities to efficiently per-
form distributed processing of iterative algorithms. This class is referred to as beyond Hadoop. As-
sociated tools such as Spark use more advanced distributed processing methods or in-database
execution to cope with some of the disadvantages that come with MapReduce.

Sample technologies for different layer elements and machine learning generations are given in
Table B2. Usually, tools evolve over time due to re-engineering efforts by vendors. For instance,

Table 5: Layered Reference Framework — Data Analytics Layer.

Layer Element Exemplary Technologies

OLAP Tools Microsoft SSAS, Pentaho Mondrian

1GML R, RapidMiner, KNIME, SAS, WEKA

2GML Mahout (MapReduce)

3GML Mahout (Spark/H>O/Flink), MLlib, HO ML, Flink-ML SAMOA, MADIib

Mahout just recently evolved from 2GML to 3GML as it now supports processing on Spark, Flink
and H»0 along with MapReduce. As these engines support efficient execution of iterative machine
learning algorithms, Mahout is classified into two layer elements.

The distinction between Bl and advanced analytics is supported by a study of KING and MAGOULAS
[65]. According to them, traditional data analysts use commercial tools such as Excel, Microsoft
SQL Server, and Tableau for explanatory Bl for descriptive analytics. On the other hand data sci-
entists (cf. [88]) utilize open source tools like R, Apache Hadoop, and scalable machine learning
such as Apache Mahout (see also [3]).

Bl analytics is about dicing, slicing, drill-up, drill-down, and drill-through operations over cleaned
historical data using a predefined multidimensional model [B36] [?6]. This can be done using
server-based OLAP Engines such as Microsoft SSAS and Pentaho Mondrian™. For small amounts,
simple off-the-shelf software like Excel can be sufficient.

7 This is referred to as data-to-code.

8 This is referred to as code-to-data.

9 All tools are classified without extensions. Extensions could allow to tools be classified in a higher tier, e.g., Revolu-
tion R, which enables distributed execution over Hadoop clusters [61]

10 See http://community.pentaho.com/projects/mondrian/.
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Big Data analytical solution can be differentiated offline and online analytics [12] [30] as well as
combined approaches (cf. [79]). Online analytics is used for real-time environments that require
low latency for results, especially with data-in-motion. Offline analytics usually employs batched
processing for ingestion, transformation, and analytics.

While latency (cf. [BY]) is the most important factor for online-analytics, throughput is essential
for offline-analytics [?5]. Latency highly depends on the technologies for processing and storage
on the corresponding layers of the layered reference framework. While online-analytical systems
usually operate on SMP, MPP, and NoSQL databases using in-database, stream, or unified pro-
cessing, offline-analytical tools usually employ distributed file systems in combination with batched
processing [42].

A survey among data analysts and data scientists from 2014 [55] reveals that in-database analyt-
ics with SQL is used by 71% of the respondents, while the next high ranked tool, R, is only used
by 43%. Only 7% of the respondents use Mahout. NoSQL and Hadoop may have solved the
storage problem for large amounts of raw data, but still seem unable to sufficiently fulfill needs of
business users with regard to data analytics.

3 The S.T.A.D.T. Selection Framework

This section introduces the S.T.A.D.T. Selection Framework (SSF), which aims to guide technology
selection in the Big Data era. It seeks to find a set of valid solutions for given Big Data use cases.
SSF is based on the layered reference framework presented in Section B and consists of two
parts: a business and a selection process. Figure B provides an overview of the framework.

Business Process

| |
| |
| A nalytics |
| |
| |
| |

\ Layer Layer Element Technology ‘
‘ Selection Selection Selection ‘
| L [29]00 D [eTeljfele) D [©91[0al | |
| [EeIeo Csile) Boloel | |
| _ |
. selection Process |

Figure 3:  The S.T.A.D.T. Selection Framework

The business process is partly based on Marr's SMART Model [63], which can be used as a
guideline on how to evolve towards a Big Data driven smart business. However, SSF as presented
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here is fundamentally different, except for the general idea of the first two process steps of strategy
and measures (here: data). SSF aims at selection of technology, not at business transformation,
and hence reinterprets and renames the process steps by MARR to reflect this change (Strategy,
Time, Analytics, Data, and Technology). In this, it is similar to the GOBIA method of [&1]], which
also combines a reference architecture with a development process. Notably, the process of
technology selection could be extracted from the SSF and be seamlessly embedded as final step
in the GOBIA method development process (GOBIA.DEV, cf. [&1]]).

The business process of SSF serves as a roadmap for companies who want to select technology
for their Big Data use case at hand. It starts with the overall strategy, i.e., business objectives to be
achieved [63]. Depending on the strategy, measures of input data, suitable analytics and required
response times are derived and used to select suitable classes of storage systems, analytical
tools, and processing engines respectively. Finally, a suitable technology mix is selected that
corresponds to the input use case.

All steps of the SSF’s business process have implications on technology selection. They filter
the layered reference framework and thereby narrow the search space for valid solutions. First,
the overall strategy is used to select relevant layers. Secondly, data measures, analytical require-
ments, and response times determine relevant layer elements. Finally, the remaining technologies
are filtered by their interdependencies (e.g., compatibilities), individual properties as well as user
preferences to derive the final solution space.

There is no single decision tree that determines the right technology mix with respect to all con-
ceivable circumstances [75]. Thus, SSF aims to find the set of best suited technologies in each
selection step. It does not seek a complete list of possible technology sets for a use case. As the
great potential for Big Data arises when different technologies are used in concert [43], it attempts
to recommend at least one tool on every required layer for further investigation.

The remainder of this section follows the structure of the SSF business process. It starts with
strategy (cf. Section Bl), defines requirements on (response) times (cf. Section B2), decides on
analytics (cf. Section B33), then continues with data (measures) (cf. Section B4), and finishes with
selection of suitable technologies (cf. Section BH). Each process step is elaborated with tangible
executable actions and their resulting implications on technology selection. The complete SSF
process is illustrated in B and B, in the form of flow charts. It subsets are elaborated in the
following.

3.1 Strategy

This section deals with Big Data strategies and their transformation into executable tactical plans.
It describes different building blocks and associates each with required layers and steps of the
SSF’s business process. While the development of a specific Big Data strategy is out of scope,
this section still provides a brief strategy guideline as well as a description of organizational re-
quirements and impacts.

Overall, strategy is essential and drives the selection of technology [41]]. Big Data initiatives need
to be aligned with the overall business strategy [42]. Prior to analysis of Big Data, it's essential to
derive relevant and business related questions that need to be answered [53] (see also [63] [35]

[#2]).

Once a strategy has been settled and a business relevant question been derived, it can be trans-
lated into an executable tactical plan. Initial building blocks are storage, processing, and analytics,
because they represent categories for typical Big Data use cases respectively Big Data products
used in these use cases. These building blocks can be arranged in any sequence of arbitrary
length to solve a business relevant question. Each block starts a new iteration of the SSF pro-
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cess and covers a unique functionality. Storage for instance acquires and stores data from any
source. It makes sure that the data is stored in an appropriate data store that fits the data at hand.
Processing transforms data from one state to another within the data source it resides, e.g., from
multi-structured data to structured data. Finally, analytics performs machine learning algorithms
to create additional value. Figure B provides an sample tactical plan.

Tactical Plan

> Storage >> Processng>> Storage >> Analytics >> Storage >
|

Building Blocks

Figure 4.  Building Blocks for Tactical Plans: Storage, Processing and Analytics.

First, a storage building block acquires for instance multi-structured data from an external source
and stores it in a suitable storage system within the infrastructure, e.g., HDFS. Secondly, a
processing building block transforms the data into a structured format, while it remains within
HDFS. The third iteration takes the resulting processed data from HDFS as source and stores it
in the most suitable storage system of the infrastructure, e.g., into a RDBMS. The subsequent
analytics building block performs machine learning algorithms on the data stored in the RDBMS.
Such blocks may also employ a distributed processing engine to fulfill their task. Finally, the
storage building block seeks the best suited system to store the analytical outcome.

Each type of building block seeks technologies at different layers of the layered reference frame-
work (cf. Section Bl). The assignment of building blocks to layers is given in Table B. Storage for

Table 6: Building Blocks — Layer Assignments.

Layer Storage Processing Analytics
Data Analytics Layer ®

Data Processing Layer ®

Data Storage Layer (v) (v)
Data Acquisition Layer b

instance seeks compatible technologies on two layers: the data acquisition layer and the data
storage layer. Analytics searches for compatible technologies on the data processing and the
data analytics layer while considering a specific storage system as input source. This is indicated
by using parentheses. Processing can be described analogously. Note that the data generation
layer is not listed in Table B as it does not contain technologies but data characteristics, which are
used for filtering layer elements in Section B4.

Different types of building blocks also require other SSF process steps. Their mappings are
given in Table [@. For each building block, the associated steps need to be executed in their
corresponding top-down order to receive a suitable technology mix. This is automatically taken
care of by the process flow charts in figures B and B. Storage building blocks for instance rely
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Table 7: Building Blocks — Process Step Assignments.

SSF Process Step Storage Processing Analytics

Measures ®
Analytics ® %

Response ®

Technology

solely on the data and technology steps, while analytics building blocks require the latter three
steps of analytics, time, and technology. Required steps for processing building blocks can be
derived analogously.

The decomposition of a use case into sequences of storage, processing, and analytics has at
least two advantages. First, it narrows the search space for each block which makes especially
large and extensive Big Data use cases more tangible. Secondly, the decomposition only requires
to understand the purpose of each building block and can be carried out by business staff without
extensive IT expertise.

However, decomposition may lead to an over-optimizing of solutions as building blocks are han-
dled in isolation. The result may be many ™locally optimal” pieces of technology, which each
require specially trained staff and integration. Trade-offs have to be made to select few, yet man-
ageable ones. But this consideration is out of scope for this work and not yet covered by the
SSF.

3.2 Time

This section handles the selection of best-suited layer elements with regard to processing in dis-
tributed environments. Hence it is only needed in cases where the underlying data is stored in
distributed storage systems [Z3]. In such cases, the selection depends on the assessment of
required response times to be derived from the use case. If the data is not stored in distributed
storage systems, then distributed processing is also not required. In such cases, the whole pro-
cessing layer is deselected and not used in the final technology selection step (cf. Section BH).
The process is illustrated in Figure B below and elaborated upon in subsequent paragraphs.

In case of distributed data, users need to specify their requirements for latency (cf. Section E5).
Essentially, they need to determine if the latency of a result is a fundamental measure for their
use case at hand. If so, the use case needs to be assessed to determine if specific time con-
straints are prescribed that must be guaranteed. In cases where real-time results are needed
(i.e., where short response times must be guaranteed), SSF selects stream processing as the
most suitable layer element. In cases where near-real-time results are sufficient and small ran-
dom time gaps (e.g., a few seconds) between data arrivals and processing results are acceptable,
SSF selects SQL [IZ9] and unified processing. The latter uses micro-batches to simulate stream-
ing (cf. Section EH). This comes with more latency but also with less complexity compared to
stream processing. Unified processing furthermore unifies the programming model for batch and
streaming which makes it a more universal tool. As such, it should be preferred over stream
processing where possible [5d].

If low latency results are not fundamental for a given use case, it is not recommended to use
SPEs due to their complexity [59]. In such situations, batch or iterative-batch processing are
more suitable (cf. Section E4). Such engines come with higher latency but allow high throughput
[B4]. The choice between the two depends on the need for iterations. Ad-hoc queries and most
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machine learning algorithms are iterative in nature [/9]. Thus, SSF selects unified and SQL
processing in case of their presence. In all other cases, the usage of batch processing is sufficient,
such that the corresponding layer element is selected.

3.3 Analytics

This section prepares the selection of suitable machine learning tools. It aims to select best suited
layer elements on the corresponding layer of the layered reference framework. The selection de-
pends on three factors: the required type of analytics, the expected data volume and the required
machine learning methods (cf. Section 225). The process is illustrated in Figure B and discussed
in the following paragraphs.

The first decision determines between Bl and advanced analytics (cf. Section EZ5). The former
represents descriptive methods while the latter emphasizes predictive and prescriptive analytics.
In case of descriptive analytics, traditional Bl technologies such as OLAP tools are naturally sup-
portive and thus selected. In case of predictive or prescriptive analytics, the required machine
learning methods need to be derived to select appropriate tools in the later technology selection
step of the SSF [I79]. For instance, if a use case aims to provide recommendations, then it usually
employs collaborative filtering. Clustering can be used if a use case needs to find similar entities,
e.g., groups of customers.

The expected data volume determines the minimum required generation of machine learning for
a given task (cf. Section PH). While 1GML tools are sufficient for data workloads that can be
analyzed on a single machine, 2GML or 3GML are required in situations that determine horizontal
scaling (cf. Section EH). The latter two need distributed processing engines while 1GML does
not. Such tools process data in local memory and just connect to arbitrary storage systems for
read/write operations. If a task can be analyzed on a single machine, then that’s the recom-
mended solution. 1GML tools are easier to handle, more mature, and more extensive in their
machine learning capabilities than horizontally scaling tools [569]. So, 2GML and 3GML technolo-
gies are only recommended in situations that require distributed processing due to high volumes.
The actual choice between the two is implicitly further refined in the time-step of the SSF by
selection of processing types (cf. Section B2).

There is a variety of different tools for advanced analytics available on the market. Due to their
large numbers, it's not reasonable to handle them in this work simultaneously. Instead, a repre-
sentative subset is selected and evaluated. KDNUGGETS [11] considers itself as one of the top
web resources for analytical software and conducts a poll about their usage every year. The re-
sults for 2015 are based on 2, 800 votes by users of the data mining community who have chosen
from a record of 93 different predefined tools [[ZT]. With some adjustments, these results can serve
as the foundation for tool selection in the thesis at hand. First, formal languages like SQL, Python,
Perl, Pig, and Lisp are removed from the list. Secondly, all 1GML tools other than the top 3 with re-
gard to usage are removed. The same holds for Big Data processing engines and analytical tools
without capabilities for advanced analytics (i.e., predictive or prescriptive methods) (cf. Section B).
Furthermore, spreadsheet tools with a focus on office users like Excel are excluded. Finally, the
list is extended by promising findings during literature research and interviews for this work. Ex-
amples for such include MADIib, Flink ML and SAMOA. Additionally, Microsoft SSAS is included
as a representative for OLAP engines. Table B provides the resulting list of analytical tools and
their classification for machine learning generations.

The gap between 1GML and 2GML/3GML tools with regard to their usage suggests that most
analytical use cases are still solved with traditional tools, even in the Big Data era.
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Table 8: Analytical Tools — Classification and Usage in 2015 (Source: based on [Z1])
Rank Usage Analytical Tool ML Generation
1 46.9% R 1GML
2 31.5%  RapidMiner 1GML
3 20.0% KNIME 1GML
4 9.7% Microsoft SSAS OLAP
5 3.3% MLlib 3GML
6 2.8% Mahout 2GML/3GML
7 2.0% H.O ML 3GML
8 - Flink ML 3GML
9 - SAMOA 3GML
10 - MADIib 3GML
3.4 Data

This section deals with measurements of data characteristics, which are used to select layer
elements on the data acquisition and the data storage layer. The overall goal is to find layer
elements that are best suited for the data at hand [43]. For this, a proper understanding of data
characteristics is key to success [45].

A starting point are the well-known 3 Vs of Big Data [36]: volume, variety, and velocity. While
velocity distinguishes between data-in-motion and data-at-rest [79], variety distinguishes between
structured and multi-structured data [B6] (see also Section E). Furthermore, the volume dimen-
sion determines how much scalability is needed. It distinguishes between horizontal and vertical
scaling (cf. Section E23) [59]. As the desired infrastructure must be scalable for the future, all
decisions on data characteristics have to support the current and the future dataset [30]. Thus,
not the current state needs to be measured, but the expected one.

The assessment of the 3 Vs follows a three-step process, as illustrated inside Figure B. First,
the velocity dimension is inspected. It determines between data-in-motion and data-at-rest. Both
require fundamentally different technologies and methods for data acquisition (cf. Section E2).
While data-in-motion leads to the selection of CEP engines and messaging systems [64], data-at-
rest selects the layer element for traditional data integration tools. The respective flow chart part
in Figure B highlights all process steps for selections with orange color.

Secondly, the volume dimension needs to be inspected. It determines whether a Big Data platform
is required or whether the data can be processed on a single machine [79]. Big Data technologies
should not be used if there is no need to do so [16] [Z5]. It is a magnitude easier to solve problems
with traditional SQL based systems or by using script-based processing of multi-structured data
on the local file system of a single machine [69]. These tools are less complex [[Z5], more mature,
widely understood, and broadly available. In a nutshell, if the data volume allows storage and
processing on a single machine, then that’'s the recommended solution. In this case, SSF selects
RDBMSs and recommends to use local non-distributed file systems in combination with scripts
for data transformation.

In cases where the overall expected volume exceeds a single machine’s capacity with regard to
storage, CPU, or memory [16], the variety dimension needs to be inspected to select a best suited
storage system [63]. While structured data is well-suited for MPP RDBMSs, multi-structured data
requires NoSQL stores or distributed file systems. The selection for multi-structured data can be
further refined by assessing the expected number and size of files [Z5]. For small numbers of
large files, it is suggested to use distributed file systems. For large numbers of small files, the
recommendation is to use NoSQL stores. MARz [64] explains that Hadoop can be a magnitude
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slower for processing of many small files compared to few big files, although both scenarios have
the same overall volume. Reasons for this include high latencies for individual record lookup in
HDFS [22]. The framework therefore suggests to select distributed file systems for large files
and NoSQL stores for large amounts of small files in accordance with the mentioned authors.
However, there are newer distributed file systems with in-memory capabilities for random and fast
data access such as Alluxio™. For such systems, the distinction for number and size of files is
less important. If they win recognition, they possibly form a new class of storage systems in the
layered reference framework for further distinction. However, this is not yet included in its current
version.

The choices for layer elements are derived from interviews [61] and from a comprehensive liter-
ature review. BEGOLI and HOREY [18] for instance provide some principles for good Big Data
architectures. The authors especially give advice on the influence of data variety on technology
selection. They suggest to use Hadoop for unstructured data, MPP RDBMSs for structured data,
and NoSQL stores for semi-structured data. Similarly, FERGUSON [42] suggests to align data
characteristics with storage and recommends to use MPP RDBMSs for complex analysis of struc-
tured data and Hadoop for multi-structured data, especially for storage and processing tasks of
archive data. He also discusses the differences between data-at-rest and data-in-motion and their
relation to CEP engines, stream and batch processing. CHAN [22] contributes to the discussion
and argues about the impact of velocity on technology selection. The author introduces an inte-
grated conceptual architecture for stream and batch processing. Finally, MARz [64] suggests the
Lambda Architecture, which unifies processing of data-at-rest and data-in-motion on a conceptual
level.

3.5 Technology

This section handles the final step of the SSF business process which eventually selects a suitable
technology mix. The selection follows a three-step process as illustrated in the lower part of
Figure B. First, suitable machine learning tools are selected in cases where analytics is required.
Secondly, the storage system that holds the input data is selected if the current SSF iteration
handles an analytics or processing building block. Finally, interdependencies are inspected to find
compatible technology mixes between required layers of the layered reference framework. The
results can be further refined by investigation of technology-specific characteristics. Each process
step is described in the following paragraphs.

If the current SSF iteration handles a building block for analytics, suitable analytical tools must
be selected. Recall the assessment for machine learning methods performed in the analytics-
step (cf. Section B3). A suitable tool must support the identified required methods. For proper
selection, Table @ and Table 00 provide mappings between analytical tools and supported machine
learning methods. The SSF process requires all technologies that enable the required methods
of the use case to be selected for the later compatibility check.

Note that all assessed 1GML tools support any of the machine learning methods. As most Big
Data analytical tools offer less functionality compared to solutions that operate in-memory on a
single machine, Big Data technologies are less promising for small data [59], which is another
indication that they should only be used when certainly needed (cf. Section B=3).

The mappings in Tables B and @0 are based on the work by LANDSET et al. [69] and RICHTER et al.
[74] who assess analytical tools with regard to machine learning support. This work enriches their
findings with additional tools and methods. It furthermore refines their results with information
collected from the individual websites and documentations of the tools.

" See http://alluxio.org/.
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Table 9: Supported Machine Learning Methods for 1 GML and OLAP Tools (based on [52)).

ML Method RapidMiner KNIME R Microsoft SSAS
Regression

Time Series

Classification

Topic Modeling

Cluster Analysis
Association Rules

Collaborative Filtering t
Dimensional Reduction ®x
ML Generation 1GML 1GML 1GML OLAP

Table 10:  Supported Machine Learning Methods for 2/3 GML Tools (based on [59] and [74]).

ML Method Mahout = Mahout Mahout H,O ML Flink MLlIib MADIib SAMOA
(MR) (Spark)  (HoO/FI) ML

Regression % % t 4

Time Series 3 t 3 t 3 3 ® ®

Classification ®

Topic Modeling % x x 3

Cluster Analysis ® ® 3

Association Rules 3 % ® b

Collaborative Filtering t 4 ® ®

Dimensional Reduction x 4

ML Generation 2GML 3GML 3GML 3GML 3GML 3GML 3GML 3GML

For simplicity, SSF only uses machine learning methods for mappings. However, each of these
methods may include several different specific algorithms that are suitable to fulfill the task. For
instance, classification can be performed with decision trees, linear and logistic regression, Naive
Bayes, Support Vector Machines (SVMs), gradient boosted trees, random forests, adaptive model
rules, and generalized linear models [69]. The framework indicates a tool’s support for a machine
learning method if one of the enabling algorithms is included. A more comprehensive list of
available machine learning algorithms as well as their coverage by processing engines is given
by the formerly mentioned authors [6Y] [74]. If needed, SSF can easily be extended with specific
algorithms. However, this is out of scope for the work at hand.

The next process step requires to select the input storage system where the data is located. This
is mandatory for processing and optional for analytical building blocks. While the former always
performs on data within the local infrastructure, analytical tasks can also be executed on a data
stream without prior storage. This is also explained with the adaptive Big Data value chain in
Section B. If the data to be analyzed is located within the local infrastructure, a specific storage
system needs to be selected, thus given as input. In case the data is not stored prior to analysis,
the storage layer can be omitted for the subsequent compatibility check.

4 An Application Scenario

This section examines an application scenario for SSF and thereby demonstrates the technology
selection, which is based on continuous paths through the layered reference model and technol-
ogy capability mappings. First, the application scenario is introduced. It features a retailer with
an existing traditional data warehouse that has been created based on traditional requirements.
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Figure 5:  Complete SSF Process — Part 1.

These are used to infuse the SSF process to find a suitable technology mix. This section shows
which technological choices SSF suggests in the context of current technologies, and if and to
which extend they deviate from the existing choices. Finally, the application scenario is revisited
with a new requirement to determine required changes to the underlying technologies to remain
compliant with requirements.

4.1 ShopMart Scenario Characteristics

The usage of a traditional data warehouse with traditional requirements is illustrated using ficti-
tious German retailer ShopMart. Although the scenario and its assumptions are fictitious, they
represent common elements in warehouse architectures and related requirements (e.g., report-
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ing or OLAP), which have evolved over time in both research and practice. Thus, the application
scenario presented could be applicable to other traditional setups that rely on similar technologies.
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The long term goal of ShopMart is to become the most profitable retailer in the low price segment
in Germany with the highest profit margin. The product selection offered by ShopMart appeals
to a broad customer base (i.e., not too expensive). To achieve these long term goals, strict cost
control mechanisms are employed. This strategy is implemented in its data warehouse with two
analytical tools that are represented as tactical plans in SSF. We outline ShopMart’s goals and
requirements next; subsequently, the current warehouse implementation is described. With this,
the necessary information for the SSF process can be derived (rather abstract tactical plans and,
based on these, data, time, analytics process part information).

1. ShopMart points out profit and cost as KPI for each subsidiary, each product, and the combina-
tion of the aforementioned. These are used for daily and quarterly reports. To this end, ShopMart
has an ERP system which collects all transactions (e.g., a customer buying a product) from the
subsidiaries. The cash registers push their data either in real-time or asynchronously to the ERP
system. From there, the data warehouse receives the data via ETL processes, which perform data
cleaning and transformation procedures to generate materialized views that prepare the data for
report generation.

2. ShopMart monitors and analyses current and historical prices of its various suppliers to select
the most cost-efficient supplier for short-term and long-term contracts. The response time require-
ments are stated as "as fast as possible” so that new orders can be placed exactly when the time
is right. The available warehouse technology allows for a response of one day (daily ETL with
analytics in the warehouse) when ShopMart built it. To this end, ShopMart has various systems
in place to capture current prices. For instance, wholesaler B2B online shops are scraped regu-
larly to acquire prices for products purchased via wholesales. The captured data is loaded via an
ETL process and the placed in the data warehouse for enhanced analytics. ShopMart currently
employs time-series analysis to forecast price trends for its products. The results are saved in
materialized views, which are refreshed daily, and supplied to a tool that can access these data
via SQL.

These requirements are used to derive two more abstract tactical plans as proposed by SSF (see
Figure @ and Figure B). These do not refer to specific technologies, only to the requirements
at hand. That way, the technology selection can be done with SSF, after it is introduced in the

following section.
(1.1) Storage (1.2) Analytics
Acquire and store Compose
facts (sales and aggregate revenue
purchases) and and cost KPIs per
dimensions (e.g., subsidiary and
products) product

Figure 7.  ShopMart Tactical Plan for Profit and Cost KPI Goal (1).

4.2 Technology Selection Approach

Once relevant layers, layer elements and perhaps input data sources have been determined with
the SSF process, a suitable technology mix can be selected (cf. Figure B). The selection process
checks for compatibilities between candidate technologies within selected layer elements and
searches for continuous compatibility paths from the topmost to the lowest selected layer of the
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(2.1) Storage (2.2) Processing (2.3) Storage (2.4) Analytics (2.5) Storage
Store scraped B2B Extract product, Store results into a Predict price Store most recent
websites with price, and vendor suitable storage trends at suppliers prediction results

product and price information. system using time-series into a suitable

information analyses storage system

Figure 8:  ShopMart Tactical Plan for Price Forecasting (2).

layered reference framework. Every continuous path is a valid solution. Figure 8 provides a
scenario that represents an analytical building block with persistent input storage. In this example,
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| Methods
Data |
Analytics 'r'____________________ ____________________
Layer :
| Analytical
: Tools
|
Data
Processing
Layer
Data
Storage ‘
Layer =

‘ ‘ Layer Element ‘ Technology

Figure 9:  Technology Selection — Search for Continuous Paths.

previous process steps have already selected best suited layer elements. Unselected layers and
layer elements are faded out and not considered for the final result. The sample use case requires
machine learning method {7} and data storage {7}, which have been provided as input in the
corresponding steps of the SSF process. With this preselection, valid solutions include the sets
{1,2,4,7} and {1,2,5,7} as both represent a continuous path from the topmost to the lowest
selected layer. The candidate solution {1, 3, 6, 7} is interrupted, as the analytical tool named {3}
does to support the required machine learning method. Thus it is not a valid solution.

This concept of technology selection requires compatibility mappings between technologies at
adjacent layers. One example for such is given in Table TI. It provides mappings for analytical
tools and distributed processing engines. SAMOA for instance can be employed in combination
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with Storm or Flink, while MLIib only supports Spark.

Table 11:  Technology Selection — Example for Compatibility Mappings (based on [59] and [74]).

Processing Engine  Mahout Mahout Mahout H,OML  Flink ML MLIib MADIib SAMOA
(MR) (Spark) (HoO/FI)

Spark x x ® ® ®
MapReduce t % % ® 3 % %
Storm % % % % % % %
H.O ® ® % ® 3 ®
Flink % % % ® %
SQL Processing t 4 t t 4 ® ® %

The general idea for mappings is based on LANDSET et al. [59] who also provide a graph-based
compatibility mapping between processing engines, machine learning methods, and analytical
tools. This work extends their idea to other layers such as storage and data acquisition to provide
a more comprehensive mapping which can be used for diverse and more customized technology
selections.

Valid sets of technologies can be further refined with user preferences and technology specific
individual properties. Storage systems can for instance be filtered with regard to their preference
for consistency, availability and partition tolerance as proposed by the CAP theorem [P0, 48].
In case of distributed systems, partition tolerance is mandatory [Z3]. Thus, users can decide
between consistency and availability for their use case at hand and filter results accordingly.

4.3 ShopMart Technology Selection

Applying the SSF technology selection approach to the ShopMart scenario at hand yields the
following results.

Tactical plan for profit and cost KPI goal (1)

(1.1) Storage. Storage building blocks work with storage and acquisition layers (cf. Section B).
The only input storage here is an operational ERP system out of scope of the analytical system.
To decide for layer elements, data velocity, overall volume, and variety need to be clarified upon.
ShopMart uses a traditional ERP solution (SAP ERP), which uses a structured data format. Data
Integration Tools are a suitable data acquisition choice, as the data is at rest there. For ShopMart
the size of an ERP currently fits inside a single server machine, therefore an SMP SQL database
is selected for storage.

As for Oracle and SAP ERP products, for instance, accessing their relational SQL databases to
extract data is considered possible, albeit challenging (cf. [B]). Furthermore, specialized APls and
connectors can be used to access ERP systems like SAP ERP (e.g., Oracle Business Warehouse
offers a connector for SAP [68]). Some ETL tools also offer SAP connectors (e.g., Pentaho Data
Integration [iZ0]).

(1.2) Analytics. For this case, an analytics building block is selected. To select it, one must
decide between Bl and advanced analytics. Standard reporting with KPls is a typical Bl analytics
task. Therefore OLAP is selected. Besides dedicated OLAP engines, some data warehouses
can be SMP or MPP SQL databases, which could also offer the required functionality (e.g., with
SQL:2003).

For ShopMart revenue and costs grouped by various dimensions are most important. Both OLAP
engines and DWH and RDBMS with respective SQL support can provide this functionality.
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For instance, for an SAP ERP system a Oracle Data Warehouse with an SAP connector could
be one viable solution that covers both building blocks. Alternatives include other DWH like SAP
BusinessWarehouse, which also offer a connection to a SAP ERP. These connectors can act as
data acquisition tools. However, it is also possible to use a dedicated ETL tool with SAP support,
if more control is necessary.

Overall, it is possible to use the same SQL database for this and the previous building block. The
exemplary choice here is a Oracle Database to be used as Data Warehouse with OLAP support,
which can represent both storage and analytics requirements.

ShopMart tactical plan for price forecasting (2)

(2.1) Storage. To decide on layer elements for this block, again data velocity, volume, and variety
need to be determined. However, certain assumptions also need to be made. Although the
requirement is to scrape data "as fast as possible”, the input data is classified as data-at-rest.
One reason is that ShopMart actively requests the data and constant polling is inefficient. Also,
human staff places purchase orders throughout the day so that a real-time data supply would not
lead to increased business value at this point. To estimate the volume and whether a distributed
system is needed, the average data volume for all wholesaler B2B websites for several updates a
day is estimated. The total size of all pages to be retrieved for one update are the total number of
unique products through all subsidiaries, each multiplied by the number of wholesalers that have
the respective product on their website. In the worst case, one page needs to be retrieved for each
product at each offering wholesaler. To simplify, ShopMart is assumed to have a common product
portfolio in all branches. The largest average number of articles in a retailer in Germany are
approximately 50000 products as of 2013 (cf. [BO]). The total number of wholesalers in Germany
as of 2014 is approximately 160,000 (cf. [B1]), from which ca. 75,000 could be potentially used
for retailers (cf. [B2]). Depending on the size of each price request (e.g., a regular HTML page
is 60 KB in average, cf. [15]) and if requests can be bundled, the size could exceed typical sizes
of a single machine. For instance, if all products are requested from 5 % of these retailers in one
request of 60 KB each, 220 MB of space would be required. In the worst case, if all products were
requested separately from all retailers in one request of 60 KB each, 210 TB of space would be
required. This has to be multiplied by the desired update frequency each day, although older raw
data can be deleted after it has been further processed. Because of this and to gain flexibility for
future growth, a distributed system should be selected. Due to the files being potentially semi-
structured and being rather small in size, NoSQL data stores are selected as storage solution.
In this case, Riak is chosen as key-value store. In a key value store, HTML page data can be
stored under a single key to be further processed without introducing HDFS inefficiencies with
many small files.

(2.2) Processing Suitable for the underlying processing blocks are Batch Processing and SQL
Processing. Low latency is not required for several intra-day updates and extracting information
does not require machine learning or ad-hoc queries. The goal is to extract the relevant price and
product as well as supplier information from the sources files and to transform these into a more
structured format. As the input source is a NoSQL data store, Batch Processing is a suitable
candidate for this task. MapReduce in Apache Hadoop is one suitable technology to achieve this
and it is compatible with the previous storage choice.

(2.3) Storage This storage building has the goal to store the results from the information extrac-
tion in the previous building block. As MapReduce has the potential to reduce information size
and to aggregate similar results already (i.e., not too many small files), HDFS could be employed
as distributed storage.

(2.4) Analytics The needed time series-analysis is a case of advanced analytics. As the data
needed distributed processing before and historical data is retained, distributed processing is
set as requirement again, 2GML or 3GML tools are selected for this building block. Of these,
for instance, MADIib and H,O ML support time-series analysis. However, only H,O ML on H,O



28

supports a distributed approach and also HDFS (cf. [48]). Thus, H>O with its ML library are
chosen.

(2.5) Storage As only the most recent analysis data, which is already condensed, should be
stored, an SMP SQL database is selected for this task. Due to the nature of needed response
time in the process before, also this data is classified as data-at-rest. As H>O only works with
HDFS or local file systems, a data integration must be performed to permanently store the result
data. This could be done with a HDFS connector, where a database can use SQL processing to
access the result files on HDFS, e.g. in an Oracle database [69].

Comparing the results with the existing architecture

Comparing the choices made with SSF and the implemented system at ShopMart, both common-
alities and differences can be identified. For the KPI reporting tactical plan, SSF recommends
an RDBMS respectively a DWH, which is exactly what ShopMart has already built. For these
requirements, the choice for traditional SQL technology remains. However, for the second tactical
plan and time-series forecasting, the choices differ. It is evident that ShopMart has employed the
existing data warehouse out of necessity, because suitable alternatives were not available in the
past. The selected technologies with the SSF can potentially better fulfil the posed requirements.
For instance, an updated forecast could be available several times a day instead of once a day
only. Also, the data intake can be scaled more effectively with the proposed technology than a tra-
ditional RDBMS. However, besides a better fit to the requirements and data characteristics, other
trade-offs are not considered by SSF, although they could be relevant for ShopMart or any other
company. A smaller fit to the requirements could be worthwhile when the better solution is rela-
tively more expensive. For instance, costs are saved for material and immaterial (i.e., hardware
and software), as well as human resources, when the same technology stack is employed. Also,
the solution is less complex. For the SSF recommendations, a more heterogeneous architecture
and more diverse employee skill set is needed. Moreover, more technologies must be integrated
with one another.

4.4 Changing Requirements

To point out how the selected technologies change, a new requirement is added and the SSF
process is invoked with it. The new requirement is that ShopMart wants to find out how their
customers sentiment and attitude towards them has evolved over time. With this information,
ShopMart intends to verify if strategic decisions negatively or positively influenced their customers’
attitude towards them. For instance, overly aggressive cost-cuttings could lead to a negative
sentiment over a perceived loss in quality. To measure this, ShopMart plans to analyze posts
on its Facebook wall and messages sent by users to their Facebook account. Posts and direct
messages nheed to be retrieved by the Facebook API and stored. After this, a sentiment analysis
needs to be carried out on this data (see Figure 00).

(3.1) Storage For this storage building block, acquisition and storage layer elements are selected.
Data from Facebook can be requested via its Graph API, which returns JSON responses (semi-
structured)™. While the Facebook pages of ShopMarts are regularly visited, actively retrieving a
snapshot constitutes data-at-rest, thus Data Integration tools are selected for acquisition. While
there are many Facebook messages and posts for ShopMart their overall data volume can be
expected to fit on a single machine ™. Therefore, SMP SQL databases are selected for the
storage layer element. A specific one could be, in line with the previous recommendations, an
Oracle Database ™.

12 see also https://developers.facebook.com/docs/graph-api

13 See also this estimation of page posts per month on a Facebook page [72]

4 Notably, Oracle natively supports JSON content in its database - https://docs.oracle.com/database/121/ADXDB/
1son.htm#ADXDB624 7|


https://developers.facebook.com/docs/graph-api
https://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6247
https://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6247
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(3.1) Storage (3.2) Analytics
Access and Store Perform sentiment
Facebook content analyses on
in suitable storage Facebook contents

systems

Figure 10: New tactical plan for ShopMart.

(3.2) Analytics For this analytics block, a 1GML tool is needed. The data is not distributed, but
text analytics is required for a sentiment analyses. RapidMiner supports SQL as input source
for analyses (in addition to others as HDFS) and offers support for text mining. Due to this,
RapidMiner is selected as analysis tool.

The technology selection for this new tactical plan demonstrates that even new use cases can
be enabled by rather traditional technologies. For instance, the Oracle database can be re-used
for this tactical plan and no new novel technology is required for storage. However, RapidMiner
is a new tool that needs to be properly integrated into ShopMarts landscape. While it does not
belong to the seemingly modern 2GML or 3GML tool, its capabilities suffice to conduct the needed
sentiment analysis.

5 Conclusions

This paper has considered the problem of making an appropriate technology selection for a given
big data application, and has introduced a corresponding framework, denoted S.T.A.D.T. Selection
Framework (SSF). As its foundation, a layered reference framework was described that catego-
rizes technologies into groups of similar types with common characteristics and functionalities.
All technology classifications, selection rules, and mapping tables are meant to guide both re-
searchers and business users, who want to select technologies for their use cases at hand or
who want to use SSF as basis for further research.

As the field of Big Data is currently advancing and evolving rapidly, it makes sense to simulta-
neously advance frameworks, methods, and tools for technology selection. To this end, SSF is
a first step and can be extended and adapted as time passes by and new technologies emerge.
Furthermore, it can be advanced with regard to additional needs.

SSF and the layered reference framework can be extended in both width and depth. One possibil-
ity is the addition of specific machine learning algorithms and new corresponding mapping tables.
The layered reference framework could be completed by additional layers, such as a topmost data
utilization layer that holds technologies and applications for end-user deliverables (e.g., by distin-
guishing between explanatory, exploratory and automation tools). Both contributions can also be
used to complement and enhance the approaches they were motivated by. For instance, both lay-
ered reference model and, especially, SSF could be used to extend and refine the GOBIA method
[&T]. It could allow to have a comprehensive and coherent tool that guides companies fully from
strategy to a customized tool mix in a customized analytics architecture. It could allow to revisit
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previous choices and to validate or refresh them as the ShopMart example has demonstrated.

Moreover, compatibility maps and feature maps can be subject to further research, e.g., which
granularity in describing features is most purposeful. In addition this, weights can be introduced
to the process and these maps to allow for multi-objective based decisions. If these were given,
mathematical methods for choosing an optimal technology mix for a given use case could be
applied (e.g., by maximizing an objective or utility function based on this). As demonstrated in the
application scenario case, only choosing the best tools in isolation and based on functionalities
alone, may lead to new challenges, such as increasing complexity or costs.

SSF can be integrated into an automated tool (e.g., a web-application) that supports users with
technology selection by using the deliverables of the thesis at hand. This could also be combined
with weights to gain a (semi-)automated support system. Finally, the question remains how exactly
the resulting technologies should be combined into a Big Data scalable infrastructure. While there
are concepts like the Lambda Architecture, there is still no cookbook or commonly accepted best
practice on how to exactly proceed. As this is needed to encourage especially small and mid-
sized companies for a comprehensive coverage of Big Data utilization, it is certainly a promising
field for future research.
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