

Working Papers

ERCIS — European Research Center for Information Systems
Editors: J. Becker, M. Dugas, B. Hellingrath, T. Hoeren,

S. Klein, H. Kuchen, H. Trautmann, G. Vossen

Working Paper No. 32

Free Objects in Constraint-logic Object-oriented
Programming

Jan C. Dageförde, Herbert Kuchen

ISSN 1614-7448

cite as: Jan C. Dageförde, Herbert Kuchen: Free Objects in Constraint-logic
Object-oriented Programming. In: Working Papers, European Research Center
for Information Systems No. 32. Eds.: Becker, J. et al. Münster 2020.

�1

Contents
Working Paper Sketch . 3

1 Programming with Free Objects . 4

2 Constraint-logic Object-oriented Programming with Muli 5
2.1 Setting the Stage for Free Objects . 7

3 Method Invocations on Free Objects . 11

4 Field Access on Free Objects . 13

5 Other Operations on Free Objects . 14
5.1 Type Operations . 14
5.2 Equality . 15

6 Demonstration . 16

7 Related Work . 18

8 Concluding Remarks . 19

A Operational Semantics of Muli (Excerpt) . 20

B Implementation of Board and Queens . 22

References . 23

� 2

List of Figures
Figure 1: Class structure assumed for the running example. 4
Figure 2: Conceptual structure of the MLVM. Adapted from [DK19] and updated in order to

reflect recent developments. 7
Figure 3: Class definitions. With a recursive definition, e. g., for Rec, exhaustive generation

of concrete objects does not terminate. 9
Figure 4: Example for an object structure that forms a ring. 9
Figure 5: Applicable instance types for a given object A a free before and after choosing

a specific implementation. 13
Figure 6: Execution trees created as a result of calling equals() on free (Variation 1) or

non-free (Variation 2) objects. 16
Figure 7: Object-oriented representation of board and queens. 17
Figure 8: Representation of graph modification operations in a class structure for the

purpose of non-deterministic choice. 18

�3

Working Paper Sketch

Type

Research Report

Title

Free Objects in Constraint-logic Object-oriented Programming.

Authors

Jan C. Dageförde, Herbert Kuchen
jan.dagefoerde@ercis.uni-muenster.de, kuchen@uni-muenster.de

Abstract

Constraint-logic object-oriented programming is useful in the integrated development of business
software that occasionally solves constraint-logic problems. So far, work in constraint-logic object-
oriented programming was limited to considering constraints that only involve logic variables of
primitive types; in particular, boolean, integer, and floating-point numbers. However, the availability
of object-oriented features calls for the option to use logic variables in lieu of objects as well.
Therefore, support for reference-type logic variables (or free objects) is required. With the present
work, we add support for reference-type logic variables to a Java-based constraint-logic object-
oriented language. Allowing free objects in statements and expressions results in novel interactions
with objects at runtime, for instance, non-deterministic execution of invocations on free objects
(taking arbitrary class hierarchies and overriding into account). In order to achieve this, we also
propose a dynamic type constraint that restricts the types of free objects at runtime.

Keywords

Constraint-logic object-oriented programming, reference-type logic variables, programming lan-
guage implementation, runtime systems.

mailto:jan.dagefoerde@ercis.uni-muenster.de
mailto:kuchen@uni-muenster.de

� 4

�interface�
Shape

+ getArea(): int

Square

+ width: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Rectangle

+ width: int
+ height: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cuboid

+ length: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cube

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Figure 1: Class structure assumed for the running example.

1 Programming with Free Objects

With constraint-logic object-oriented programming (CLOOP), software engineers are offered an
integrated programming paradigm for the development of business software that occasionally
requires search for solutions to constraint-logic problems. As a mixed paradigm, CLOOP provides
well-known benefits of object-oriented programming languages (e. g., encapsulation of data and
behaviour) as well as of constraint-logic programming (declarative specification and solving of
search problems). For example, the CLOOP language Muli is based on Java and adds logic
variables, symbolic execution, constraints, and encapsulated search. Muli code is executed by
the Muli Logic Virtual Machine (MLVM), which is a custom Java virtual machine that also provides
support for symbolic execution and constraint solving [DK19]. Syntactically, logic variables in Muli
can be of arbitrary types. However, so far, constraints can only be defined over logic variables
of primitive types. Primitive logic variables may still be assigned to fields of objects, so they can
already be used in an object-oriented context. Nevertheless, adding support for logic variables that
represent entire objects requires additional work.

Adding support for reference-type logic variables (free objects in particular) raises interesting ques-
tions. After all, objects in object-oriented languages (and, therefore, also in CLOOP) encapsulate
data and behaviour. For instance, consider the following code from Listing 1 in the context of the
class hierarchy illustrated in Figure 1, which will serve as a running example.

Shape s free;
if (s.getArea() == 16) {

System.out.println(s.toString()); }

Listing 1: Excerpt from a constraint-logic object-oriented program that invokes a method on a free
object.

As Shape merely provides the interface, the invocation of s.getArea() can be interpreted in
multiple ways depending on the number of implementations of Shape. Like in this example, we
generally assume that the type of a free object is only partially known, i. e., when a variable that
is declared as Object o is of type Object, o may in fact hold an instance of Object or of any
subtype. Consequently, there is only partial information about the (actual) type of an object, so that
there are implications for

� how free objects are instantiated,

�5

� how accesses to fields of a free object are handled,

� invocations of methods on free objects,

� type operations on free objects, and

� the notion of equality of free (and regular) objects.

Some of these implications have been discussed conceptually in a research-in-progress paper, but
the discussion was incomplete and did not yet result in an implementation [Dag19].

In order to effectively realize the benefits of an integrated CLOOP language, these implications
need to be discussed in order to define the semantics and to implement a runtime environment.
In CLOOP, we expect the applicable alternatives to be evaluated non-deterministically until all
alternatives are considered (“don’t know” non-determinism) [DK19]. Therefore, the example in
Listing 1 would result in at least four lines of output as there are four classes that implement the
Shape interface.

This paper provides the following contributions to CLOOP, all of which we have exemplarily
implemented in a modified MLVM:

� A semantics for non-deterministic method invocations on free objects, i. e., on objects whose
type is only partially known (Section 3). This is achieved in combination with a dynamic type
constraint that restricts the valid types of an object at runtime.

� A discussion of how fields of free objects are accessed (Section 4).

� Another application of the dynamic type constraint for the implementation of type operations,
namely casts and checks in Section 5.1, followed by a discussion of equality of (free) objects
(Section 5.2).

� Throughout the paper we use several examples that demonstrate how free objects are useful in
programming. In addition, we display larger example applications for demonstration purposes in
Section 6.

Moreover, related research is outlined in Section 7. Finally, Section 8 summarizes the contribution
and provides an outlook. Subsequently, we start by giving a short introduction to Muli in Section 2,
followed by a description of preliminaries of free objects (Section 2.1). All example programs
presented in this paper can be compiled with the Muli compiler and executed on our modified
MLVM.

2 Constraint-logic Object-oriented Programming with Muli

We base our work on the Münster Logic-Imperative Language (Muli).1 Muli is a CLOOP language
whose syntax and semantics are based on those of Java 8 [DK19]. The Muli Logic Virtual Machine
(MLVM) is a modification of a JVMS-compliant (cf. [Lin+15]) Java virtual machine and serves as the
runtime environment. We briefly introduce the main features of the Muli programming language.

In Muli, an unbound (“free”) variable is declared using the free keyword, e. g.,
int width free;.

At runtime, free variables are treated as logic variables to be used in symbolic expressions. Free
objects are declared analogously, but prior to our work their semantics was undefined and the

1https://github.com/wwu-pi/muli.

https://github.com/wwu-pi/muli

� 6

MLVM did not provide an implementation for treating free objects yet. Therefore, the following code
was able to compile but the method invocation in the second line failed:

Shape s free;
s.getArea();.

This issue is tackled in the present paper, adding full support for logic variables that represent
objects.

In Muli, the way all (logic and regular) variables are used in boolean or arithmetic expressions is
identical to Java. However, an expression that contains unbound variables cannot be evaluated
to a constant. Therefore, the MLVM treats those variables symbolically and creates a symbolic
expression [DK18].2 To give an example, after executing the Muli program in Listing 2, five holds
the constant value 5, whereas symbolic holds the symbolic expression x + 5.

int x free;
int two = 2, three = 3;
int five = three + two;
int symbolic = x + five;

Listing 2: Example that demonstrates symbolic evaluation of expressions that contain logic vari-
ables.

Ultimately, symbolic arithmetic expressions can evaluate to numeric constants (e. g., after sub-
stituting all contained symbolic variables by appropriate constants). For instance, an arithmetic
expression that contains only int (logic) variables and int constants can be used anywhere where
an int expression is expected. Therefore, symbolic expressions can be passed as parameter
values, assigned to variables, or used as the return value of a method. A symbolic expression is
preserved until all comprised logic variables can be substituted by a constant, either via sufficiently
specific constraints or via labelling.

The behaviour described so far is deterministic. However, as soon as a symbolic expression is
used as part of a condition that leads to branching (e. g., in an if statement), it is possible that the
execution environment cannot decide on a unique outcome because, given appropriate constraints,
a condition could be evaluated to both, false and true. For example, in the context of Listing 2
we could add

if (symbolic > 5),
which is true iff x ≥ 1, and false otherwise. Since symbolic is free, both alternatives are
equally possible.

Whenever more than one choice is applicable, the MLVM searches over all possible branches
[DK18]. The MLVM non-deterministically selects a branch that implies a specific outcome (e. g., the
condition shall be false). The resulting constraint is imposed on a constraint store that the MLVM
maintains as part of its execution state [DK19]. After executing that branch, the MLVM backtracks
execution state (constraint store, operand and frame stacks, program counter, and heap values) to
the point where a choice was made, and then proceeds with the next branch.

With the purpose of limiting the effects of non-deterministic execution, non-deterministic branching
is encapsulated. Non-deterministic programs, or search regions, are written in lambda expres-
sions or methods and are passed as a parameter to one of Muli’s encapsulation methods (e. g.,
getAllSolutions() or muli()). The result of an execution branch, i. e., either the final return
value or an uncaught exception, becomes a solution to a CLOOP. The encapsulation method
collects all solutions and returns them to the calling, deterministic program. Depending on the
chosen encapsulation method, the surrounding program can process solutions from an array or

2In contrast, arithmetic expressions in Java are immediately evaluated to a constant result, i. e., the original expression
is lost immediately after its evaluation. This also happens in Muli for expressions that are constant.

�7

Execution core

Search tree management

Search & backtracking

VM instrumentation

Native wrapper

Trails

Symbolic Muli VM

Constraint store

Solver

Solver component

Command-line interface

Bytecode parser Runtime library

01010
10101
01010
10101

Compiled Muli classes

M
ul

iL
og

ic
V

irt
ua

lM
ac

hi
ne

Figure 2: Conceptual structure of the MLVM. Adapted from [DK19] and updated in order to reflect
recent developments.

from a stream that is evaluated non-strictly, i. e., individual solutions are computed and returned on
an on-demand basis.

These features are implemented in the MLVM, whose main components are depicted in Figure 2.
The execution core is a JVMS-compliant custom Java virtual machine [Lin+15] with modifications
for symbolic execution of Java bytecode and encapsulated non-deterministic search [DK19]. The
search tree management component maintains a search tree that represents the non-deterministic
execution of search regions, where inner nodes represent non-deterministic choices and each
leaf corresponds to a solution or an explicit failure. Within the execution core, the evaluation
of a bytecode instruction that has non-deterministic behaviour in a search region results in the
creation of a representation of the choice and its alternatives. This choice is then passed to
the search tree management component, thus updating the search tree. The decision about
which alternative to follow is delegated to the search & backtracking component, which imposes
a corresponding constraint on the constraint store and checks whether the resulting constraint
system is still satisfiable using the solver component [DK19]. The solver component currently
leverages the finite domain solver JaCoP [Kuc03]; alternative solvers can easily be integrated.
Once an alternative is selected, the execution core continues execution on the corresponding path.
The search tree management component also maintains a set of trails that record side effects
during execution. The trails are used during backtracking in order to revert side effects so that a
virtual machine state is achieved that is consistent for subsequent evaluations.

2.1 Setting the Stage for Free Objects

Reference types As Muli is based on Java, Muli distinguishes the same four distinct kinds of
reference types as Java does [Gos+15, § 4.3]: type variables, array types, interface types, and
class types. In this work we focus on class and interface types. Subsequently, they are subsumed
under reference types and their instances are objects, where our focus is on free objects in
particular. Regarding classes and interfaces, the language C# has a definition of reference types
that is congruent with Java’s definition [Mic20]. Therefore, even though the considerations in
this paper are focused on Muli, they are also applicable to other constraint-logic object-oriented
programming languages, e. g., languages based on C#.

Due to the nature of Java (and, therefore, Muli), reference types are not limited to data encap-
sulation. With the concept of methods, class types and interface types notably encapsulate
behaviour. As a consequence of method overriding and runtime polymorphism, the behaviour

� 8

may also change along the implementation hierarchy. Recall the object-oriented representation of
shapes from Figure 1 which will serve as our running example. The Shape interface prescribes
subtypes to implement an appropriate method getArea() that calculates the area from relevant
field values. Moreover, in Muli, all classes inherit from java.lang.Object implicitly as they do
in Java [Gos+15, § 4.3.2]. For the purpose of the running example, assume that each shape also
overrides the default implementations of toString() and equals() that were inherited from
java.lang.Object, facilitating representations of field values in a human-readable form as well
as comparisons with other objects.

As a result, when a variable is declared, e. g., Shape s free, s can in fact hold an instance of
any class that implements Shape. If Shape were a non-abstract class, an instance of Shape would
be a possible object as well. The fact that the actual type potentially differs from the declared type
affects the type casts that can (validly) be performed on s at runtime, as well as the behaviour that
is expected from invoking methods on the object. Consequently, adding support for free objects
requires

� a non-arithmetic constraint that enforces the type (or, rather, a set of possible types) of a free
object, and

� a way to discover the implementation hierarchy from all available classes.

Class discovery In order to tackle the latter, we need to make a decision regarding which
classes are considered. In Java and Muli programs, classes may be available to an application
even though they are not (yet) in memory from the start of an application. Instead, they reside as
.class files in a pre-defined location on disk (the so-called class path) and are loaded on-demand
by the class loader [Lin+15, § 5.3.5]. As a consequence, we can decide whether only those classes
are considered that have already been loaded, as opposed to taking all classes into consideration
that are on the class path. The first alternative implies that a fresh program such as

Shape s free;
might not find any implementations for s, unless classes that implement Shape were actively
loaded, e. g., by constructing dummy objects from relevant classes as in

new Rectangle(); new Cuboid(); new Cube(); new Square();
Shape s free;.

Since a necessity for creating dummy objects creates additional mental load for developers, we
instead propose to consider all available classes on the class path, at the cost of additional
overhead for discovering and parsing all classes that are on the class path. In that case,

Shape s free;
is sufficient to instantiate a free object that can be specialized to any of its subtypes. Performing ex-
ante class discovery imposes a limitation, namely that we operate under a closed-world assumption
and only take classes into consideration that are present on disk at the start of the application. In
Java, applications are able to create and load additional classes on the fly. However, as this feature
is used rarely, it is hardly a practical issue that these classes would not be discovered.

Instances of free objects With a declaration C o free;, o becomes a logic variable that could,
in theory, be substituted for either of the following:

1. an existing object from memory (the heap) that is type-compatible with C, thus re-using existing
objects from different contexts;

2. a fully-generated fresh object, making a non-deterministic choice to branch non-deterministically
over all possible alternative instances at the time of declaration; or

3. a fresh symbolic object o, which is further specified on an on-demand basis by imposing
constraints on o.

�9

otherSimple

+ flag: boolean
+ count: int

Rec

+ flag: boolean
+ count: int

Figure 3: Class definitions. With a recursive definition, e. g., for Rec, exhaustive generation of
concrete objects does not terminate.

o o

o

o : C

: C

: C

Figure 4: Example for an object structure that forms a ring.

In other contexts, a declaration C p implies that p is a fresh object, unless an existing object is
assigned to p explicitly. As a consequence, we consider the first alternative semantically dangerous.
Moreover, if existing objects were re-used, we would need to ensure that their respective scopes
are not violated.

The second alternative is problematic as well since we would need to generate concrete object
instances, or rather, full(!) object graphs: For an arbitrary class C in C o free;, the number of
possible instances for which o can be substituted can be very large or even infinite. Firstly, because
there may be (finitely) many specializations for C. Secondly, because the definition of C (or of a
subtype) may be recursive, in turn containing a field of type C (or a subtype).3 For instance, consider
the definitions of Simple and Rec presented in Figure 3. The set of possible instances for objects
of type Simple is a combination of the field values: {(true,−2147483648), (false,−2147483648),
(true,−2147483647), (false,−2147483647), . . .}. Therefore, with 233 possible instances, the set is
already very large to branch over, even though the class definition is relatively simple. Consequently,
the state space becomes very large if we generate objects and branch non-deterministically at
the point of declaration. The situation becomes even worse given a recursive class definition
such as Rec, for which the generation of an instance does not terminate unless, at some level,
other == null. For the same reason, exhaustively generating all instances is impossible.

For these reasons we resort to the third alternative, i. e., the declaration merely constructs a
symbolic variable that can be substituted for a fresh object which is not yet known. For instance,
with the definitions from Figure 3 and a closed-world assumption, an object Rec s free; is
sufficiently specific since there are no subtypes of Rec, and for a symbolic variable it is possible to
ignore the recursive type definition. The free object can then be made more specific by using it,
e. g., by invoking a method (see Section 3) or by adding constraints over its fields (see Section 4).

Since we do not re-use existing objects, free objects are always fresh instead of picking applicable
instances from memory. Consider a method isRing(C o) as displayed in Listing 3. As a
consequence of excluding re-use, an invocation C o free; isRing(o), cannot construct an
object graph as illustrated in Figure 4, since each free object of type C would only generate another
fresh free object of type C as its field, without being able to refer to existing objects from the heap.
Therefore, generating a ring structure by chance is not possible.

Nevertheless, we can still use non-deterministic search to generate ring structures of arbitrary
lengths intentionally. This is achieved with a search region that closes a ring structure by explicit
assignment, as demonstrated in Listing 4. Using non-deterministic choice over a free boolean
variable, the search region either grows the ring by instantiating a fresh free object and assigning it
as the next element, or closes it by assigning the first element of the ring as the next.

3Alternatively, the same situation occurs if C contains a field of a type that has a recursive definition.

� 10

public boolean isRing(C o) {
Set<C> seen = new HashSet<>();
while (o != null) {

if (seen.contains(o)) {
return true;

} else {
seen.add(o);
o = o.o; } }

return false; }

Listing 3: A method that checks whether an object o contains a ring structure, such as the one
from Figure 4.

public static void main(String[] args) {
Stream<Solution<C>> rings = Muli.muli(() -> {
C o free; return generateRing(o, o); }); }

public C generateRing(C first, C o) {
boolean closeRing free;
if (closeRing) {

o.o = first;
return first;

} else {
C next free;
o.o = next;
return generateRing(first, o.o); } }

Listing 4: Using non-deterministic choice for generating ring structures of arbitrary length, such as
the one in Figure 4.

Instantiating a free object Since free objects are treated symbolically, a lot of instantiation effort
is skipped. Specifically, constructors that would normally initialize an object are ignored. This is
necessary for two reasons: first, because the MLVM only has partial information about the actual
type; and second, because a class may present multiple constructors (and might even block the
default constructor). Instead, since at least the supertype is known, the MLVM can initialize fields
according to the definition of the supertype by putting appropriate free variables into every field.
For example, a free object of type Rec (Figure 3) is initialized with {flag = boolean free,
count = int free, other = Rec free}. However, there is one notable exception: We want
free objects of a type to be consistent with regular objects of the same type. This implies that static
fields of a type need to hold the same values for all objects of that type, regardless of whether an
object is free. Therefore, if a free object is the first of its type to be instantiated, we do call static
initializers of the type to ensure consistency with objects that are created later. If it is not the first, it
will consistently use the same static values as other objects of its type.

Now that we have clarified what free objects look like, we continue by discussing specific interactions
with free objects. Section 3 tackles method invocation, whereas Section 4 presents field access. In
addition, Section 5.1 discusses operations that work explicitly on types, and Section 5.2 explains
the notion of equality against the presence of both, free objects and regular objects.

�11

public static void main(String[] args) {
List<Solution<String>> solutions = Muli.getAllSolutions(() -> {

Shape s free;
if (s.getArea() == 16)

return s.getClass().getName();
else

Muli.fail(); }); }

Listing 5: A search region that branches over the types of a free object and returns the selected
classes’ names.

3 Method Invocations on Free Objects

Recall the example structure from Figure 1, in which Shape s free; instantiates a free object
that can, in fact, assume one of four distinct actual types. Its actual type is irrelevant, unless the
free object is used. Therefore, once we attempt to invoke a method that is defined in Shape, e. g.,
getArea(), the type becomes important since the behaviour changes depending on the type.
Moreover, given a single free object, using getArea() from one implementation and toString()
from another would result in inconsistent behaviour and therefore does not make sense. As a
consequence, when we select an implementation for invocation, we commit the free object to the
type that corresponds to the selected implementation. All implementations are equally possible, so
choosing is non-deterministic.

For instance, consider the program presented in Listing 5. It searches for instances of Shape s
whose area (as determined by getArea()) is 16, and then returns the name of the actual class
whose implementation has been selected. Consequently, given the structure in Figure 1, we expect
a solution array containing the following strings (in any order): {"Rectangle", "Square",
"Cuboid", "Cube"}.

The program contains two method invocations on s that are discussed in the following. The first
invocation is to s.getArea() on an unbound s. Non-deterministically selecting and invoking an
implementation commits s to a specific type, thus binding s. Therefore, on the second invocation
to s.getClass(), s is sufficiently specific, so that only a unique implementation of getClass()
is possible, namely, the one that a class inherits from java.lang.Object. Consequently, the
second invocation is deterministic. Similarly, an invocation s.toString() would be deterministic
as well, even though every class provides its own implementation: Resulting from the binding
that occurs when s.getArea() is called, the type of s is sufficiently specific so that only one
toString() implementation can possibly be selected while maintaining consistency with previous
behaviour.

Generalizing from this example, for a given object o on which an invocation o.m() is performed,
the runtime environment needs to discover the set of types that provide an implementation for m().
This discovery needs to take into consideration which types o may assume. Algorithm 1 calculates
the set of possible implementations for m(), as explained subsequently. For non-free objects
o whose class has a definition for m(), the returned set is a singleton (or empty in the invalid
case that the type of o does not provide an implementation, thus yielding a runtime exception).
Therefore, invocation is deterministic. For free objects, the returned set may have more elements.
In that case, invocation results in a non-deterministic choice.

Methods in Java and Muli can be overloaded, so in order to target a specific overloading, Method
signifies a combination of a method name and its descriptor, i. e., parameter types and return
type [Lin+15, § 4.3.3]. In the beginning, Algorithm 1 initializes an empty set impls that will later
contain the invocation candidates. Afterwards, jvmsLookup() looks up a method implementation

� 12

Algorithm 1: Discovering the set of method implementations that are candidates for invocation.
1 implementations(Object target, Method m)
2 Let impls := { };
3 Method mostSpecificFromSupertypes := jvmsLookup (m, target.class);
4 if mostSpecificFromSupertypes != null then
5 impls += mostSpecificFromSupertypes;

6 Let types := target.getPossibleTypes ();
7 foreach type ∈ types do
8 Method implementation := type.getMethod (m);
9 if implementation != null && !implementation.isAccAbstract () then

10 if type.isAccAbstract () —— type.isAccInterface () then
11 Let subtypes := type.getImmediateInstantiableSubtypes ();
12 foreach subtype ∈ subtypes do
13 impls += subtype.getMethod (m);

14 else
15 impls += implementation;

16 return impls;

upwards along the class hierarchy using the known lookup procedures defined in the JVMS [Lin+15,
§ 6.5 (invokeinterface and invokevirtual)]. This implementation is the one that will be invoked if the
free object assumes its supertype (target.class). Afterwards, implementations looks at each
type that the free object may assume (target.getPossibleTypes()), searching for individual
implementations (getMethod()). If the type that contains a found implementation is not marked
as abstract or as an interface, its implementation is directly added to impls. Otherwise, methods
from the type’s immediate, instantiable subtypes4 are added to impls as the original type could not
be instantiated. Finally, impls is returned to the MLVM and is used to create the non-deterministic
choice for invocation.

When an implementation alternative is selected, the runtime environment has to add a constraint
types(o) = T to the constraint store before executing a specific method body, where the set of
types T depends on the selected implementation alternative. This constraint is added in order
to ensure that, after the MLVM chooses an implementation alternative, it commits to that choice
regarding later interactions with the object o, thus narrowing its type.

To explain the construction of the set T , have a look at the artificial implementation hierarchy
displayed in Figure 5: There is a class A that implements a method m(). B inherits from A and
overrides m(), adding custom behaviour. In contrast, C inherits from B but does not add custom
behaviour. Last but not least, D inherits from C and provides an implementation for m(). Now, for
a free object A a free, S = {A, B, C, D} contains the possible instance types. On invocation of
a.m(), Algorithm 1 discovers the implementations provided by A, B, and D. After selecting one
of the implementations, the actual type of a can still be one from a set of types. Specifically, the
type of a can either be the type that provides the implementation or one of its subtypes, except
for subtypes that provide their own implementation (as their respective implementation would
have needed to be invoked otherwise). We call this reduced set of types T . Exemplarily, this is
illustrated in Figure 5 where the possible types are constrained to T = {B, C} after selecting the
implementation B.m(). Even though D also is a subtype of B, it is not part of T as it provides an
own implementation of m() and would therefore conflict with having chosen B’s implementation.

Furthermore, for the sake of completeness, assume that B’s implementation of m() calls a method
n(), for which C provides its own implementation. Choosing an implementation for m() still

4That is, direct subtypes that are not abstract or, otherwise, their immediate instantiable subtypes.

�13

A

+ m()

B

+ m()
- n()

C

- n()

D

+ m()

possible types of a after choosing B.m()

possible types of a
= S

= T

Figure 5: Applicable instance types for a given object A a free before and after choosing a
specific implementation.

class Supertype { public int field = 2; }
class Subtype extends Supertype { public int field = 1; }
class FieldShadowing {
public static void main(String[] args) {

Supertype a = new Supertype();
Supertype b = new Subtype();
a.field == b.field; // This is true!

} }

Listing 6: Subclasses can hide fields of their supertypes, but fields are never overridden.

reduces the set of types to B and C, but the later invocation of n() from within m() results in
further non-deterministic branching over the two types and their respective implementations.

In Appendix A we present a modification of Muli’s operational semantics, esp. Equation (Invoke-
ND), that incorporates non-deterministic choice in method invocation. The MLVM implements
Algorithm 1 and represents the non-deterministic choice by creating a Choice node in the active
search tree. The newly created Choice node has one branch for each invocable implementation
alternative. For each branch, an appropriate type constraint is declared that maintains integrity
regarding the selected implementation. When the MLVM selects an alternative from the Choice
node, the corresponding constraint is imposed by adding it to the constraint store, and the constraint
is removed again before an alternative is evaluated.

4 Field Access on Free Objects

As in Java, fields of an object are accessed in Muli using a dot notation, e. g., square.width given
an object Square square. In an implementation hierarchy, fields are special in that subclasses
cannot override fields that they inherit. For instance, consider the example presented in Listing 6.
The subclass declares a field with a name that is identical to that of a field in the superclass, and
assigns a different value. However, as a result, the original field is merely hidden from the subclass,
i. e., instances of the subclass actually have two fields with the same name [Gos+15, §§ 8.3 and
9.3]. In the example of Listing 6, this implies that the condition a.field == b.field is true,
even though b is an instance of Subtype. Since both instances a and b are accessed through the
Supertype type, the field field from the superclass is used in both accesses.

The example from Listing 6 is limited to non-free objects. But as the implementation hierarchy is
irrelevant for accesses to fields of regular objects, accessing fields of free objects also does not
need to consider all possible types of an instance. Therefore, accessing a field of objects, free or

� 14

non-free, is a deterministic operation that only depends on the type of the variable through which
an instance is accessed.

Following the considerations regarding the initialization of free objects from Section 2.1, field
access to a fresh free object yields an appropriate free variable, unless the accessed field is static.
So for instance, assuming the class structure from Figure 1,

Rectangle r free;
return r.width;

returns a free variable of type int.

5 Other Operations on Free Objects

Method invocation and field access constitute basic functionality in object-oriented programs.
However, there are further operations on objects that are affected by the introduction of free objects.
In the following, we present the handling of explicit operations on the type of free objects, followed
by a short discussion of the equality of (free) objects.

5.1 Type Operations

The handling of type operations is interesting for free objects as there is only partial informa-
tion about their types. In Java/Muli bytecode, this affects the implementation of type checks
(instanceof instruction) and type casts (checkcast instruction) [Lin+15, § 6.5]. These two
instructions differ in that instanceof returns the result of the type check as a boolean value,
whereas checkcast throws an exception if the (free) object on the operand stack cannot be cast
to the intended type (otherwise, checkcast does nothing). For free objects, these operations are
evaluated non-deterministically if either outcome is equally possible. For instance, consider the
snippet in Listing 7, in which both type operations are used. When the condition is evaluated, two
cases are possible: Either instanceof returns true if types(s) = {Rectangle, Cuboid} holds,
or false otherwise. The cast in the true branch is always possible since the possible types of s
are sufficiently constrained as a result of evaluating instanceof. Therefore, the cast operation is
deterministic in this example.

Shape s free;
if (s instanceof Rectangle) {

Rectangle r = (Rectangle) s;
r.width = r.height; }

Listing 7: Using type operations on a free object.

Generally, whether type operations on a free object are non-deterministic depends on the type
constraints that are imposed on the object. A type operation o instanceof T or (T)o involves
a free object o and a target type T . For the decision whether an operation is non-deterministic,
we define the set SuccessfulTypeso,T that contains all types that o may assume and that are also
subtypes of or equal to T (with a � b meaning that a is a subtype of b or b itself):

SuccessfulTypeso,T = {t|t ∈ types(o), t � T}

If o is of a type ∈ SuccessfulTypeso,T , the type operation is successful w. r. t. the Java Virtual
Machine Specification [Lin+15, § 6.5]. An additional set, AdverseTypeso,T , contains all types for

�15

Shape s free;
Rectangle r = new Rectangle();
r.width = 100; r.height = 101;
return s.equals(r); // Variation 1,
// or...
return r.equals(s); // Variation 2.

Listing 8: Example program involving non-determinism in the check for value equality.

which the operation would fail if o assumes one of these types:

AdverseTypeso,T = {t|t ∈ types(o), t � T}

In relation to the set of currently possible types types(o) that the object o may assume, the
two sets are disjoint and their union comprises all possible types. SuccessfulTypeso,T and
AdverseTypeso,T can be used for determining how both type operations are evaluated: If there
is at least one element in SuccessfulTypeso,T the implication is that the type operation can be
successful. Similarly, if AdverseTypeso,T is not empty, the type operation can fail. These two
cases are not mutually exclusive; if both sets contain at least one element, execution branches
non-deterministically.

Similar to how invocation is implemented in the MLVM, this implies that, at runtime, a Choice
node is created, containing the two alternatives as branches with appropriate type constraints
that make use of the sets calculated previously. For the branch that represents a successful
type operation on a free object o, the MLVM imposes a constraint types(o) = SuccessfulTypeso,T .
Similarly, for the alternative branch, types(o) = AdverseTypeso,T . Before continuing execution with
one of the branches of a non-deterministically evaluated type operation, the MLVM imposes the
corresponding constraint, thus ensuring that the assumptions regarding a free object are consistent
within a branch of execution.

5.2 Equality

In Java, and therefore in Muli, there are two distinct notions of equality of objects [Gos+15,
§ 15.21.3]. Reference equality is different from value equality in that reference equality compares
the addresses of two objects, but not their contents. Therefore, reference equality of two objects
implies that they are, in fact, the same. Reference equality is tested using the == or != operators.
In contrast, value equality between two objects is tested by invoking the equals() method on one
object, passing the other as an argument.5 Classes may override equals() in order to determine
whether two objects are value-equal, thus giving developers the opportunity to decide which fields
must be identical for two objects to be considered equal (if any).

In the context of free objects, we do not need to make any particular considerations on how to
handle equality for two reasons. First, using == or != on objects deterministically compares the
addresses, where free objects make no exception. Second, invoking an equals() method on a
free object will cause the MLVM to non-deterministically evaluate the method invocation. Since
equals() does not differ from other methods, no special handling is required other than what we
discussed w. r. t. method invocation (see Section 3).

For the purpose of illustration, consider Listing 8 in the context of our running example. The
code uses two variations for comparing the same two objects w. r. t. value equality. Variation 1

5The default implementation provided by the Object class falls back to comparing reference equality.

� 16

s.equals(r)

false

types(s) = {Cuboid}

==

==

true

s.height = r.height

false

s.height 6= r.height

s.width = r.width

false

s.width 6= r.width

types(
s) = {Rect

angle}

false

types(s) = {Square} false

types(s) = {Cube}

(a) Variation 1

instanceof

==

==

true

s.height = r.height

false

s.height 6= r.height

s.width = r.width

false

s.width 6= r.width

types(s) = {Rectangle, Cuboid}

false

types(s) = {Square, Cube}

(b) Variation 2

Figure 6: Execution trees created as a result of calling equals() on free (Variation 1) or non-free
(Variation 2) objects.

invokes the equals() method on the free object s. In contrast, Variation 2 invokes that method
on a specific object, but passes s as a parameter. The resulting execution flows are illustrated in
Figure 6. Variation 1 branches immediately on invocation of equals(), thus creating one branch
per implementation of equals(), whereas the invocation itself is deterministic in Variation 2. In
contrast, Variation 2 branches primarily because instanceof is called, checking the type of the
free object (cf. Section 5.1). Both variations create comparable branches in case both the regular
object and the free object are instances of Rectangle, which is ensured for the free object by
imposing an adequate constraint. In that case, Rectangle’s implementation of equals() also
compares the field values, ensuring that the custom value equality criterion is met. Furthermore, the
illustration of the execution trees emphasizes that, in contrast to ==, equals() is not commutative
for free objects.

6 Demonstration

The shape application example has been useful for explaining the concepts introduced by free
objects. We proceed by discussing two example applications in order to demonstrate that free
objects improve the expressiveness of other Muli applications as well.

As the first example, consider the n-Queens problem as a classic search problem (cf. e. g., [FA03,
Section 12.3]). Listing 9 presents a solution in Muli, assuming a class structure as illustrated in
Figure 7. The search region initializes object representations of the board and of the n queens.
Constraints are imposed by invoking isOnBoard() on the board object, thus restricting the
positions of queens to 0 < x ≤ n and 0 < y ≤ n in accordance with the board size n×n. Moreover,
threatens() imposes constraints such that two queens may never share a diagonal, row, or
column.6 Muli.fail() is invoked when constraints are not fulfilled. As a result, the search

6For reference, the specific implementation of these two methods is displayed in Appendix B.

�17

public static void main(String[] args) {
Solution<Queen[]> solution = Muli.getOneSolution(() -> {
final int n = 8; Board board = new Board(n);
Queen[] qs = new Queen[n];
for (int i = 0; i < n; i++) {

Queen q free; qs[i] = q; }
for (int i = 0; i < n; i++) {

if (!board.isOnBoard(qs[i])) Muli.fail();
for (int j = i+1; j < n; j++)

if (board.threatens(qs[i], qs[j]))
Muli.fail(); }

return qs; });
for (Queen q: solution.value)

System.out.println("(" + q.x + "," + q.y + ")"); } }

Listing 9: n-Queens search region that makes use of object-oriented features for the implementa-
tion of a search problem.

Board

+ dim: int

+ isOnBoard(Queen): boolean
+ threatens(Queen, Queen): boolean

Queen

+ x: int
+ y: int

Figure 7: Object-oriented representation of board and queens.

region only returns placements that satisfy the constraints. This example results in two interesting
observations. First, CLOOP facilitates logical grouping of data and constraint definitions using
classes and objects. This is illustrated by the Board class that stores its dimensions in a field and
derives constraints accordingly, thus demonstrating encapsulation of data and behaviour in CLOOP
programs. Consequently, encapsulation in classes can be used for the purpose of structuring
the constraint problem, instead of using intransparent encodings that would require additional
explanations. Second, we can leverage free objects for encoding the unknown state, i. e., the
placement of queens on the board.

As the second example, consider an application that systematically generates directed acyclic
graphs using non-deterministic search. Such an application is useful, for example, in order to
use the generated graphs to describe the hidden layers of a feed-forward artifical neural network
(ANN). In an ANN, the simplest structure is an empty graph, so that the ANN’s input nodes are
directly connected to all output nodes. Starting from the empty graph, two operations increase the
size of the graph: Either adding a hidden layer (with one node as a starting point), or adding a
node to one of the hidden layers. Using Muli, we can implement a search region that enumerates
graph structures by non-deterministically choosing one of these operations. Additionally, for the
AddNode operation, it non-deterministically selects the layer to which a node is added. The
non-deterministic choice for one of the operations can be implemented using the equivalent of
a coin flip, i. e., using a free variable boolean coin free; and branching over that, adding a
layer if it evaluates to true and adding a node to a layer otherwise. However, the mappings of
true and false require explanation. Instead, with free objects and non-deterministic choice for
method invocation, we can express the non-deterministic choice for selecting an operation using
a free object. Given the class structure from Figure 8, we can implement a search region that
instantiates an empty graph and systematically grows it by non-deterministic choice. The search
region is displayed in Listing 10. In particular, note the free variable Operation op free; that
the runtime environment non-deterministically binds to a specific type by invoking perform()
on it, thus choosing an operation. As an implementation detail, a third operation is added that
returns the current graph structure as a solution. In contrast, the other operations perform their

� 18

Operation

+ perform(Graph): Graph

Graph

- structure: List<Integer>

+ main(String[])
+ generate(Graph): Graph
+ addLayer()
+ addNode(int)

AddLayer

+ perform(Graph): Graph

AddNode

+ perform(Graph): Graph

Return

+ perform(Graph): Graph

Figure 8: Representation of graph modification operations in a class structure for the purpose of
non-deterministic choice.

public class Graph {
// <...>
public static void main(String[] args) {

Stream<Solution<Graph>> graphs = Muli.muli(() -> {
Graph basic = new Graph();
return Graph.generate(basic); });

// Consume graphs from the stream, e.g., for output.
public static Graph generate(Graph g) {
Operation op free;
return op.perform(g); } }

Listing 10: Search region that generates directed acyclic graphs using non-deterministic method
invocation on a free object.

modification on the Graph object and subsequently invoke generate() with the modified graph
in order to proceed with the next operation. As a result, the possible variations in behaviour are
encapsulated in classes that are named according to their function. Consequently, the search
region itself can remain on a high abstraction level, whereas implementation details are moved into
the respective classes.

Limitations This work comes with some limitations. First, it only considers objects as logic
variables. Other kinds of reference types, esp. arrays, have a different structure and have therefore
been left out of scope. Future work needs to tackle arrays as logic variables. Second, a potential
parallelization of Muli applications is currently disregarded. The reason for that is that non-
deterministic search in combination with parallelism results in state space explosion, resulting
in search trees that can hardly be managed. Third, all considerations were discussed using
a Java-based CLOOP language. However, they should be applicable to other (future) CLOOP
languages as well because, for instance, C# uses a similar definition of reference types as that of
Java.

7 Related Work

The present work is inspired by the concepts introduced in [Dag19]. In addition to the concepts
discussed previously, our work is novel in that it provides a set of algorithms and an actual

�19

implementation in the context of the MLVM. As opposed to treating free objects symbolically
and only resolving them as needed, other work has considered the object generation approach,
particularly against the background of software test-data generation [Kor90; ZL07; DZZ08]. The
authors present different ways of generating all possible object instances before they are used
in a program. Also in the context of test-case generation, symbolic execution for Java objects
has been explored, mutating object types in order to generate test data [LLX17]. However, their
approach requires initialization of reference-type logic variables, as opposed to treating them purely
symbolically. Moreover, they require bytecode to be augmented with instrumentation instructions
for symbolic execution, thus requiring re-compilation even of used libraries. In contrast, the MLVM
operates on standard-compliant, unmodified JVM bytecode. Moreover, special kinds of objects,
namely strings and lists, have been investigated, but the results are limited to data encapsulation.
Krings et al. translate string operations into constraints using a Prolog-based constraint-handling
rules system [Kri+20]. Since even the resulting strings are formulated only in Prolog, the applicability
in an integrated language is limited. Lists can also be treated symbolically like our free objects,
initializing just as much of them as needed for a specific program that uses the lists [KPV03].

Generally, integrating features from declarative paradigms into mainstream programming lan-
guages has proven useful. Prominent examples are the integrations of concepts from functional
programming, such as the Stream API for Java and LINQ for .NET, but also integrated languages
such as Scala [Ode+17; Hun18]. The language Kaleidoscope’91 attempts an integration of an
object-oriented language with constraints, facilitating the specification of constraints over fields of
one or more objects [FB92]. This already adds a sense of declarativity that is unknown in most
current object-oriented programming languages, as fields could be formulated as expressions that
combine other fields. Nevertheless, the authors do not discuss objects that are completely free
as in the sense of this work, i. e., whose types are only partially known. Other work leverages
object-orientation capabilities by using objects for modelling declarative expressions, e. g., for
integrating Prolog search into Java programs [Ost15]. Alternatively, there are constraint solver
libraries for Java, such as OptaPlanner [The20] and JaCoP [Kuc03]. Neither of these approaches
achieve a full integration of constraint-logic features into an object-oriented programming language
and merely provide an object-oriented abstraction layer for (some) constraint-logic features.

Closely related to CLOOP is the paradigm of functional-logic programming, most prominently
represented by Curry [HKM95]. Analogous to CLOOP, functional-logic programming adds fea-
tures from logic programming to a functional programming language, resulting in programming
languages that are similarly non-deterministic. On the one hand, Curry has algebraic data types
that resemble the data-encapsulation behaviour of Muli objects. On the other hand, neither Curry
nor other functional-logic programming approaches consider encapsulation of behaviour. Similarly,
constructors in Prolog merely encapsulate data. Therefore, encapsulation of behaviour and its
non-deterministic evaluation are novel contributions of the present work.

8 Concluding Remarks

In this paper we add the concept of free objects to constraint-logic object-oriented programming.
Specifically, this work contributes the concept of logic variables with a class type or an interface type.
These are particularly interesting because, in addition to encapsulating data, they also encapsulate
behaviour. To that end, we propose and implement a semantics for interacting with free objects
at runtime, taking non-deterministic choice over the encapsulated behaviours into account. We
demonstrate our concepts by implementing them in the MLVM, i. e., in the runtime environment
used by the CLOOP language Muli. A modified MLVM that includes our implementation is available
on GitHub.7

7https://github.com/wwu-pi/muli.

https://github.com/wwu-pi/muli

� 20

We have shown that adding free objects to a constraint-logic object-oriented programming lan-
guage improves the expressiveness of the language. CLOOP languages were already useful
in applications that interleave imperative code with non-deterministic search. With the recent
additions, CLOOP can also be used to express traditional constraint-logic problems in novel ways
using object representations that also encapsulate behaviour, such as n-Queens with methods that
explain constraints by using descriptive names. Moreover, CLOOP can be used for an effective
formulation of new problems.

Even though the considerations in this paper are focused on Muli, they are also applicable to
other constraint-logic object-oriented programming languages. For instance, since C#’s definition
of reference types is congruent to that in Java, future work could port the results to a (future)
constraint-logic object-oriented programming language that is based on C#. Future work sets out
to add support for free arrays in order to incorporate another kind of reference type.

A Operational Semantics of Muli (Excerpt)

The operational semantics is defined for a core subset of Muli [DK18]. Here, we first display
an excerpt from the reduction rules that are relevant to a rule that we modify with this paper.
Subsequently, the modified rule is presented. Throughout the definitions, modifications to their
respective originals that were necessary in order to add support for free objects are indicated in
red.

Symbols In this reduction semantics, computations depend on an environment, a state, and a
constraint store [DK18].

� Env = (V ar ∪ M)→ (A ∪ (V ar∗ × Stat)): Set of all environments, mapping variables ∈ V ar
to addresses ∈ A and methodsM to a tuple ((x0, x1, . . . , xk), s), signifying parameters and a code
body s. Note that we add x0 to the original definition. x0 shall hold the object that a method was
invoked on, unless the method is static.

� ρ0 ∈ Env is a special initial environment that maps functions to their respective parameters and
code (under the simplifying assumption that classes and their methods are in global scope).

� Σ = A → ({⊥} ∪ Tree(A,Z)): Set of all possible memory states.

� A special address α0 with σ(α0) = ⊥ is reserved for holding return values of method invocations.

� CS = {true} ∪ Tree(A,Z): Set of all possible constraint store states.

� ρ ∈ Env, σ ∈ Σ, γ ∈ CS. Discriminating indices are added if necessary.

� a[x/d] is used for modifications to a state or environment a, meaning

a[x/d](b) =

{
d , if b = x

a(b) , otherwise.

� The semantics of expressions is described with the infix relation

→ ⊂ (Expr × Env × Σ× CS)× ((B ∪ Tree(A,Z))× Σ× CS).

� The semantics of statements is described by the infix relation

 ⊂ (Stat× Env × Σ× CS)× (Env × Σ× CS).

�21

Syntax The grammar is only modified slightly, incorporating method invocations on objects and
reference type variables. Otherwise, taken from [DK18].

e ::= c | x | e1 ⊕ e2 | x.m(e1, . . . , ek)
where c ∈ Z, x ∈ V ar, e1, . . . , ek ∈ AExpr, ⊕ ∈ AOp, k ∈ N,
x.m can be resolved to an implementation i ∈M,

b ::= e1 � e2 | b1 ⊗ b2 | true | false

where e1, e2 ∈ AExpr, b1, b2 ∈ BExpr, � ∈ ROp, ⊗ ∈ BOp,

s ::= ; | int x; | int x free; | T x; | T x free; | x = e; | e; | {s} | s1 s2 |
if (b) s1 else s2 | while (b) s | return e; | fail;

where x ∈ V ar, e ∈ AExpr, b ∈ BExpr, s, s1, s2 ∈ Stat, T is a class or interface type.

Reduction Rules The following reproduces reduction rules as preliminaries (cf. [DK18]), before
presenting a rule modification for non-deterministic invocation as required for this paper.

Variable resolution:
〈x, ρ, σ, γ〉 → (σ(ρ(x)), σ, γ) (Var)

Arithmetic expressions, resulting either in a constant value if nested expressions are constant, or in
a symbolic expression otherwise:

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2),

v1, v2, v = v1 ⊕ v2 ∈ Z
〈e1 ⊕ e2, ρ, σ, γ〉 → (v, σ2, γ2)

(AOp1)

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2), {v1, v2} * Z
〈e1 ⊕ e2, ρ, σ, γ〉 → (⊕(v1, v2), σ2, γ2)

(AOp2)

Non-deterministic Invocation Under the assumption of global functions and disregarding object-
oriented features, the operational semantics of invocation is defined as a deterministic operation
[DK18]:

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2), . . . ,

〈ek, ρ, σk−1, γk−1〉 → (vk, σk, γk), ρ(m) = (x̄k, s),

〈s, ρ0[x̄k/ᾱk], σk[ᾱk/̄vk], γk〉 (ρk+1, σk+1, γk+1), σk+1(α0) = r

〈m(e1, . . . , ek), ρ, σ, γ〉 → (r, σk+1[α0/ ⊥], γk+1)

Adding support for object-orientation and the availability of multiple implementations for an object,
we modify and replace the rule as presented subsequently (changes highlighted in red). The
new rule uses the set implementations(o,m) that is calculated using Algorithm 1 in order to find
possible implementing types.

〈o, ρ, σ, γ〉 → (v0, σ, γ), 〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2),

. . . , 〈ek, ρ, σk−1, γk−1〉 → (vk, σk, γk), i ∈ implementations(v0,m),

ρ(i) = (x̄k, s), 〈s, ρ0[x̄k/ᾱk], σk[ᾱk/̄vk], γk ∧ types(o) = T 〉 (ρk+1, σk+1, γk+1), σk+1(α0) = r

〈o.m(e1, . . . , ek), ρ, σ, γ〉 → (r, σk+1[α0/ ⊥], γk+1)
(Invoke-ND)

� 22

For non-free objects target whose class has a definition for m, implementations(target,m) is a
singleton. Therefore, invocation is deterministic. For free objects, implementations(target,m) may
have more elements. In that case, the evaluation of this rule becomes non-deterministic. Moreover,
note that a constraint types(o) = T is added after selecting a specific implementation. T depends
on the selected implementation alternative as explained in Section 3 (illustrated with Figure 5).

The new rule depends on the rule in Equation (Var) for resolving the object variable o based on the
state of environment and memory, and on the rules in Equations (AOp1) and (AOp2) for substituting
parameter expressions. The definition assumes that the environment ρ contains every method
definition, comprising a parameter definition x̄k and a body s.

B Implementation of Board and Queens

The following code implements the class structure as illustrated in Figure 7.

public class Board {
final int dim;

public Board(int dim) { this.dim = dim; }

public boolean isOnBoard(Queen q) {
if (q.x < 0) return false;
if (q.x > dim-1) return false;
if (q.y < 0) return false;
if (q.y > dim-1) return false;
return true; }

public boolean threatens(Queen p, Queen q) {
if (p.x == q.x) return true;
if (p.y == q.y) return true;
if (p.x - p.y == q.x - q.y) return true;
if (p.x + p.y == q.x + q.y) return true;
return false; } }

public class Queen { int x, y; }

�23

References

[Dag19] Jan C. Dageförde. “Reference Type Logic Variables in Constraint-Logic Object-Oriented
Programming”. In: Functional and Constraint Logic Programming. Ed. by J. Silva.
Vol. 11285. Lecture Notes in Computer Science. Cham: Springer, 2019, pp. 131–144.
DOI: 10.1007/978-3-030-16202-3 8.

[DK18] Jan C. Dageförde and Herbert Kuchen. “An Operational Semantics for Constraint-Logic
Imperative Programming”. In: Declarative Programming and Knowledge Management.
Ed. by Dietmar Seipel, Michael Hanus, and Salvador Abreu. Vol. 10977. Lecture Notes
in Artificial Intelligence. Cham: Springer, 2018, pp. 64–80. DOI: 10.1007/978-3-030-
00801-7 5.

[DK19] Jan C. Dageförde and Herbert Kuchen. “A Compiler and Virtual Machine for Constraint-
logic Object-oriented Programming with Muli”. In: Journal of Computer Languages 53
(2019), pp. 63–78. ISSN: 2590-1184. DOI: 10.1016/j.cola.2019.05.001.

[DZZ08] A. V. Demakov, S. V. Zelenov, and S. A. Zelenova. “Using abstract models for the
generation of test data with a complex structure”. In: Programming and Computer
Software 34.6 (2008), pp. 341–350. ISSN: 03617688. DOI: 10.1134/S0361768808060054.

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming. Berlin
Heidelberg: Springer, 2003. ISBN: 978-3-642-08712-7.

[FB92] Bjorn N. Freeman-Benson and Alan Borning. “Integrating Constraints With an Object-
Oriented Language”. In: ECOOP 92. Vol. 615. 1992, pp. 268–286. ISBN: 978-3-540-
55668-8. DOI: 10.1007/BFb0053042.

[Gos+15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java®
Language Specification – Java SE 8 Edition. 2015. URL: https://docs.oracle.com/
javase/specs/jls/se8/jls8.pdf (visited on 05/03/2019).

[HKM95] Michael Hanus, Herbert Kuchen, and Juan Jose Moreno-Navarro. “Curry: A Truly
Functional Logic Language”. In: ILPS’95 Workshop on Visions for the Future of Logic
Programming (1995), pp. 95–107.

[Hun18] John Hunt. A Beginner’s Guide to Scala, Object Orientation and Functional Program-
ming. 2nd ed. Springer, 2018. ISBN: 978-3-319-75770-4.

[Kor90] Bogdan Korel. “Automated Software Test Data Generation”. In: IEEE Transactions on
Software Engineering 16.8 (1990), pp. 870–879. ISSN: 00985589. DOI: 10.1109/32.
57624.

[KPV03] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. “Generalized Symbolic
Execution for Model Checking and Testing”. In: TACAS’03 Proceedings of the 9th
international conference on tools and algorithms for the construction and analysis of
systems. 2003, pp. 553–568.

[Kri+20] Sebastian Krings, Joshua Schmidt, Patrick Skowronek, Jannik Dunkelau, and Dierk
Ehmke. “Towards Constraint Logic Programming over Strings for Test Data Generation”.
In: Declarative Programming and Knowledge Management. Vol. 12057. 2020, pp. 139–
159. DOI: 10.1007/978-3-030-46714-2 10.

[Kuc03] Krzysztof Kuchcinski. “Constraints-driven scheduling and resource assignment”. In:
ACM Transactions on Design Automation of Electronic Systems 8.3 (2003), pp. 355–
383. ISSN: 1084-4309. DOI: 10.1145/785411.785416.

[Lin+15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java® Virtual Machine
Specification – Java SE 8 Edition. 2015. URL: https://docs.oracle.com/javase/specs/
jvms/se8/jvms8.pdf (visited on 05/03/2019).

[LLX17] Lian Li, Yi Lu, and Jingling Xue. “Dynamic symbolic execution for polymorphism”. In:
ACM International Conference Proceeding Series (2017), pp. 120–130. DOI: 10.1145/
3033019.3033029.

https://doi.org/10.1007/978-3-030-16202-3_8
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1134/S0361768808060054
https://doi.org/10.1007/BFb0053042
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1109/32.57624
https://doi.org/10.1109/32.57624
https://doi.org/10.1007/978-3-030-46714-2_10
https://doi.org/10.1145/785411.785416
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://doi.org/10.1145/3033019.3033029
https://doi.org/10.1145/3033019.3033029

� 24

[Mic20] Microsoft. Reference types (C# Reference). 2020. URL: https://docs.microsoft.com/
en - us / dotnet / csharp / language - reference / keywords / reference - types (visited on
04/16/2020).

[Ode+17] Martin Odersky et al. Scala Language Specification. 2017. URL: http://www.scala-
lang.org/files/archive/spec/2.12/ (visited on 05/03/2019).

[Ost15] Ludwig Ostermayer. “Seamless Cooperation of Java and Prolog for Rule-Based Soft-
ware Development”. In: Proceedings of RuleML 2015. 2015. URL: http://ceur-ws.org/
Vol-1417/paper2.pdf.

[The20] The OptaPlanner Team. OptaPlanner User Guide, Version 7.32.0. 2020.

[ZL07] Ruilian Zhao and Qing Li. “Automatic Test Generation for Dynamic Data Structures”. In:
Fifth International Conference on Software Engineering Research, Management and
Applications. 2007, pp. 545–549. DOI: 10.1109/SERA.2007.64.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
http://www.scala-lang.org/files/archive/spec/2.12/
http://www.scala-lang.org/files/archive/spec/2.12/
http://ceur-ws.org/Vol-1417/paper2.pdf
http://ceur-ws.org/Vol-1417/paper2.pdf
https://doi.org/10.1109/SERA.2007.64

�25

Working Papers, ERCIS

Nr. 1 Becker, J.; Backhaus, K.; Grob, H. L.; Hoeren, T.; Klein, S.; Kuchen, H.; Müller-Funk,
U.; Thonemann, U. W.; Vossen, G.; European Research Center for Information Systems
(ERCIS). Gründungsveranstaltung Münster, 12. Oktober 2004.

Nr. 2 Teubner, R. A.: The IT21 Checkup for IT Fitness: Experiences and Empirical Evidence
from 4 Years of Evaluation Practice. 2005.

Nr. 3 Teubner, R. A.; Mocker, M.: Strategic Information Planning – Insights from an Action
Research Project in the Financial Services Industry. 2005.

Nr. 4 Gottfried Vossen, Stephan Hagemann: From Version 1.0 to Version 2.0: A Brief History
Of the Web. 2007.

Nr. 5 Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality Check 2.0. 2007.
Nr. 6 Teubner, R.; Mocker, M.: A Literature Overview on Strategic Information Management.

2007.
Nr. 7 Ciechanowicz, P.; Poldner, M.; Kuchen, H.: The Münster Skeleton Library Muesli – A

Comprehensive Overview. 2009.
Nr. 8 Hagemann, S.; Vossen, G.: Web-Wide Application Customization: The Case of Mashups.

2010.
Nr. 9 Majchrzak, T.; Jakubiec, A.; Lablans, M.; Ükert, F.: Evaluating Mobile Ambient Assisted

Living Devices and Web 2.0 Technology for a Better Social Integration. 2010.
Nr. 10 Majchrzak, T.; Kuchen, H: Muggl: The Muenster Generator of Glass-box Test Cases.

2011.
Nr. 11 Becker, J.; Beverungen, D.; Delfmann, P.; Räckers, M.: Network e-Volution. 2011.
Nr. 12 Teubner, A.; Pellengahr, A.; Mocker, M.: The IT Strategy Divide: Professional Practice

and Academic Debate. 2012.
Nr. 13 Niehaves, B.; Köffer, S.; Ortbach, K.; Katschewitz, S.: Towards an IT consumerization

theory: A theory and practice review. 2012
Nr. 14 Stahl, F., Schomm, F., & Vossen, G.: Marketplaces for Data: An initial Survey. 2012.
Nr. 15 Becker, J.; Matzner, M. (Eds.).: Promoting Business Process Management Excellence in

Russia. 2012.
Nr. 16 Teubner, R.; Pellengahr, A.: State of and Perspectives for IS Strategy Research. 2013.
Nr. 18 Stahl, F.; Schomm, F.; Vossen, G.: The Data Marketplace Survey Revisited. 2014.
Nr. 19 Dillon, S.; Vossen, G.: SaaS Cloud Computing in Small and Medium Enterprises: A

Comparison between Germany and New Zealand. 2015.
Nr. 20 Stahl, F.; Godde, A.; Hagedorn, B.; Köpcke, B.; Rehberger, M.; Vossen, G.: Implementing

the WiPo Architecture. 2014.
Nr. 21 Pflanzl, N.; Bergener, K.; Stein, A.; Vossen, G.: Information Systems Freshmen Teaching:

Case Experience from Day One (Pre-Version of the publication in the International Journal
of Information and Operations Management Education (IJIOME)). 2014.

Nr. 22 Teubner, A.; Diederich, S.: Managerial Challenges in IT Programmes: Evidence from
Multiple Case Study Research. 2015.

Nr. 23 Vomfell, L.; Stahl, F.; Schomm, F.; Vossen, G.: A Classification Framework for Data
Marketplaces. 2015.

Nr. 24 Stahl, F.; Schomm, F.; Vomfell, L.; Vossen, G.: Marketplaces for Digital Data: Quo Vadis?.
2015.

Nr. 25 Caballero, R.; von Hof, V.; Montenegro, M.; Kuchen, H.: A Program Transformation for
Converting Java Assertions into Control-flow Statements. 2016.

Nr. 26 Foegen, K.; von Hof, V.; Kuchen, H.: Attributed Grammars for Detecting Spring Configura-
tion Errors. 2015.

Nr. 27 Lehmann, D.; Fekete, D.; Vossen, G.: Technology Selection for Big Data and Analytical
Applications. 2016.

Nr. 28 Trautmann, H.; Vossen, G.; Homann, L.; Carnein, M.; Kraume, K.: Challenges of Data
Management and Analytics in Omni-Channel CRM. 2017.

Nr. 29 Rieger, C.: A Data Model Inference Algorithm for Schemaless Process Modeling. 2016.

� 26

Nr. 30 Bünder, H: A Model-Driven Approach for Graphical User Interface Modernization Reusing
Legacy Services. 2019.

Nr. 31 Stockhinger, J.; Teubner, R: How Digitalization Drives the IT/IS Strategy Agenda. 2020.

�27

	Working Paper Sketch
	Programming with Free Objects
	Constraint-logic Object-oriented Programming with Muli
	Setting the Stage for Free Objects

	Method Invocations on Free Objects
	Field Access on Free Objects
	Other Operations on Free Objects
	Type Operations
	Equality

	Demonstration
	Related Work
	Concluding Remarks
	Operational Semantics of Muli (Excerpt)
	Implementation of Board and Queens
	References

