
Working Papers

ERCIS – European Research Center for Information Systems
Editors: J. Becker, K. Backhaus, H. L. Grob, T. Hoeren, S. Klein,

H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 5

Web Service Discovery – Reality Check
2.0

Stephan Hagemann, Carolin Letz, Gottfried Vossen

ISSN 1614-7448

 cite as: Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality
Check 2.0. In: Working Papers, European Research Center for Information Systems
No. 5. Eds.: Becker, J. et al. Münster 2007.

1 �

Table of Contents

1 Introduction ...4

2 Fundamentals ...7
2.1 Web Service Registry Scenario Alternatives ..7

2.1.1 Universal Business Registry (UBR)...7
2.1.2 Domain Specific Business Registry...8
2.1.3 Intranet Service Registry ...8
2.1.4 B2B and EAI Service Registry...9

2.2 Web Service Search Use Cases ..10
2.2.1 Design Time Search..10
2.2.2 Run Time Search...10

2.3 Implementations for Web Service Registries..11
2.3.1 The UDDI Standard...12
2.3.2 Additional Standards ...14
2.3.3 Web 2.0 Information Sharing...16

3 Service Discovery on the Public Internet - State of the Art...18
3.1 Criteria for Comparison...18
3.2 Universal Business Registry ...20
3.3 Specialized Search Engines and Catalogues...20

3.3.1 XMethods ..20
3.3.2 WebserviceX ...21
3.3.3 WebserviceList ..21
3.3.4 StrikeIron ...22
3.3.5 RemoteMethods ..22
3.3.6 Woogle ..22
3.3.7 WSDLicious ...24
3.3.8 ProgrammableWeb..24
3.3.9 Obsolete Registries ...24

3.4 Search Engines...25

4 Evaluation ...26

5 Conclusion and Outlook..29

References ...31

� 2

List of Figures

Figure 1: Schema of domain-specific UBR according to [DJ+05]. .. 7

Figure 2 Schema of domain-specific Web Service registry according to [DJ+05]. 8

Figure 3: Schema of internal Web Service registry according to [DJ+05]..................................... 9

Figure 4: Schema of a B2B UDDI according to [DJ+05]. .. 9

Figure 5: Patterns supported by a registry inquiry API [DJ+05]. ... 10

Figure 6: Dynamic service call via tModel. .. 11

Figure 7: Dynamic service selection via service bus according to [Ley03]. 11

Figure 8: Schematic overview of UDDI data structure according to [ACK+04]........................... 12

Figure 9: UDDI versus WS-Inspection according to [DJ+05]. ... 14

Figure 10: ebXML specifications. .. 15

3 �

List of Tables

Table 1: Overview of Web service discovery resources (as of May 8, 2007). 28

� 4

Working Paper Sketch

Type

Research Report

Title

Web Service Discovery – Reality Check 2.0

Authors

Gottfried Vossen is professor of Information Systems and Computer Science at the University of
Muenster in Germany. He is the European Editor-in-Chief of Elseviers Information Systems - An
International Journal. Carolin Letz and Stephan Hagemann are PhD students in Prof. Vossen’s
research group focused on Web services and Web technologies. Contact via email {vossen,
carolin.letz, stephan.hagemann}@uni-muenster.de.

Abstract

In practice the ability to find the right Web service decides between a functionality being
implemented anew and at least the possibility of executing it via a service. This report evaluates
existing public portals for Web service discovery with respect to their characteristics and their
acceptance by developers. For this, we distinguish different possible settings and use cases
and evaluate how these are supported in practice. Only few of the publicly available Web
service registries are growing in size and importance, with the use case best supported being
the pre-programming phase of evaluation of the service landscape.

Keywords

Web services, Web service discovery, UDDI, public service directories, Web 2.0

5 �

1 Introduction
Web services (WS) and their standards have matured over the last couple of years. Their
importance as realizing components for service-oriented architectures (SOAs) has increased as
well [DJ+05, WCL+05]. A key driver for SOA implementations is the hope to save development
time and costs through a higher degree of component reuse in the form of readily implemented
services [LLG+03, BH06]. To achieve this goal it is necessary, among other things, to make
Web services discoverable. This paper presents a reality check on service discovery which
extends a previous such check undertaken in [BSF+06].

Different theoretical approaches, ranging from artificial intelligence and automated reasoning to
automata theory, have focused on certain aspects of reasoning about Web service discovery,
comparing the expressiveness of Web service models and examining the complexity of service
matching [e. g., GTB01, PKP+02, LH03, DSV04]. These are in contrast to the current practical
state of Web service discovery on the public Internet where much less sophisticated techniques
are employed, an apparent clash that has been observed before.

At the end of 2005 three groups of approaches to Web service discovery were identified and
analyzed in [BSF+06]. The comparison includes:

� the Web service standard approach, the UDDI business registry,

� specialized Web service search engines and portals, and

� general-purpose search engines.

Features taken into account include the search functionality itself, the number of available
services, the availability of discovered services, the choice of interfaces, the availability of a
service rating, of test and demo functionality, of a WSDL parser, and of information about
service costs.

The year 2006 has seen a dramatic rise of public interest in Web 2.0 applications [VH07]. A
common interpretation of this buzz-word is the shift from the Web of information towards the
Web as a platform [MO07]. This trend was not noticed in [BSF+06]. Therefore, just a year later,
there is a need to redo this type of study. However, we do not merely take a snapshot of the
current state of Web service discovery on the public Internet but also uncover trends and
tendencies in the events of the past one and a half years. Consequently, the criteria for
comparison are extended to put a special emphasis on the opportunities Web 2.0 developments
have to offer. Especially the explicit support for communities with eased user feedback and
interaction mechanisms, end user orientation, and simple categorization approaches based on
tagging are taken into account.

The paper is organized as follows: In Section 2, the foundations of Web services and their
discovery are summarized, where the focus is on practical techniques for discovery as relevant
for this study. Theoretical models are not taken into account. Furthermore, the foundations of
Web 2.0 and the support for information retrieval in Web 2.0 are presented. In Section 3,
different practical approaches towards Web service discovery on the public Internet are
examined and updates compared to the findings in [BSF+06] are given. In Section 4, the

� 6

different approaches are compared and opportunities for Web 2.0 techniques are pointed out,
that help to enhance Web service search engines. In Section 5, the paper concludes with an
outlook on future research opportunities that combine Web service discovery and Web 2.0.

7 �

2 Fundamentals
In this section the foundations of Web service search and discovery as well as of Web 2.0 are
briefly introduced as far as they are relevant for the following analysis.

Web service standards have emerged in a bottom-up fashion from low level communication
protocols to higher level standards, such as quality of service descriptions [Vos06]. From the
very beginning, the emergence of Web services has been accompanied by the attempt to
establish standards that are accepted by all major software vendors to ensure interoperability of
possibly world-wide available Web services. A key success factor for this idea is the
discoverability of Web services.

A registry approach has been chosen as solution. Before introducing the current standard UDDI
[CHR+04] that has been invented for such a Web service registry and discussing possible
alternatives in Section 2.3 we will take a step backwards to examine the different scopes for
which a Web service registry might be used in Section 2.1 and to look at different use cases for
Web services registries in SOAs in general in Section 2.2.

2.1 Web Service Registry Scenario Alternatives
Different scenarios for Web service registries have been described by the OASIS
standardization committee [TSG02], by software vendors such as IBM [Gra01] or Microsoft
[MSC03a, MSC03b], and by software designers and researchers [DJ+05]. The following
summarizes and consolidates these scenarios. The scenarios differ in their scope of application,
which we will introduce here. This will later serve as a guideline for evaluating which scopes are
supported by publicly available Web service registries.

2.1.1 Universal Business Registry (UBR)
The first and most general use case is to operate a registry as a global domain independent
business registry, the UBR. In this scenario it is used as public registry service, open to every
service provider and consumer, and free of charge. It functions as registry and as search engine
for establishing B2B contacts in an automated way [DJ+05, TSG02, Gra01]. A few such central
registry nodes have been operated world-wide by a few international companies, these were
interconnected as depicted in Figure 1.

Microsoft SAP

NTT-Com IBM
UBR

Figure 1: Schema of domain-specific UBR according to [DJ+05].

� 8

2.1.2 Domain Specific Business Registry
Instead of offering a single global registry for every domain it is also possible to establish
specialized registries that contain entries related to only one industry branch [Gra01]. Such
registries need to establish usage rules that must be adhered to by all users to ensure the
quality of the entries and to avoid unwanted entries that are not domain related. Therefore, such
a registry needs an administration that supervises the users [DJ+05]. This usage scenario is
depicted in Figure 2.

Registry
Provider Consumer

Administrator

Policy Policy

publish search

Business Relationship

authorizeauthorize bindingbinding

Figure 2 Schema of domain-specific Web Service registry according to [DJ+05].

In such a domain specific environment it is also possible to claim a membership fee, to rate the
services and to use established domain specific taxonomies for service search.

2.1.3 Intranet Service Registry
Registries are also set up within the Intranet of enterprises [DJ+05, Gra01]. Figure 3
summarizes this scenario. Services of one department can be offered to all organizational units.
Application designers use the registry to search for available services and as reference list that
does not only contain the services but that also helps finding the related technical
documentation [MSC03a]. Further, services within the registry can be approved of by the quality
manager to be used company-wide. This approval process may also be extended to include
external services that the application developers are allowed to use. Thus, the internal Web
service registry helps to manage the software development process and the quality of services
[DJ+05].

9 �

Administrator

Internal
Registry

External
Registry

Developer

Selection Maintenance

IntranetInternet

Use Use
Search

Figure 3: Schema of internal Web Service registry according to [DJ+05].

2.1.4 B2B and EAI Service Registry
The Intranet usage scenario can be extended such that the company in question does not only
use its own and external services, but for some services also acts as an external service
provider towards trading partners and customers [TSG02, MSC03a, Gra01]. In this scenario it is
necessary to ensure that only applicable services available on the Intranet registry are made
public. Only a selection of services is suitable for external use and must be carefully chosen by
an administrator [DJ+05]. This is depicted in Figure 4.

Administrator

Internal
Registry

External
Registry

External Customer

Publication Selection

IntranetInternet

Use
Search

Figure 4: Schema of a B2B UDDI according to [DJ+05].

Note that only in the first scenario a globally known access point to the registry is assumed. All
the other use cases rely on domain specific or enterprise specific access points that need not
be published in a global directory. Instead, it is assumed that users know where the registry is
located and that the access to it is restricted.

� 10

2.2 Web Service Search Use Cases
A Web service registry may need to support various search patterns, the search by the human
developer at design time of an application and the search for services of an application at run
time.

2.2.1 Design Time Search
At design time, a Web service registry can be used in a combination of browse and drill-down
search patterns. The application designer calls a find-function, e. g., find_service of the registry
inquiry API and gets a result list back. This list can then be inspected manually or refined
through a more specific search. To inspect a particular entry in the result list, a get_Detail-
function is needed, e. g., get_ServiceDetail. Finally, the designer can invoke the service. This
sequence of browse, drill-down, and invocation patterns as supported by the UDDI standard is
depicted in Figure 5, which we will cover extensively in Section 2.3.1. Most often, development
tools support this exploratory search pattern with a GUI. The results of the search at design time
can be used to bind the service invocation statically into the application.

Client

find_xyz(parameters)

Registry

Result List

get_zyxDetails(bindingKey)

Service Details

Web Service

ServiceCall(Parameters)

Result

Browse
Pattern

Drill-down
Pattern

Invocation
Pattern

Figure 5: Patterns supported by a registry inquiry API [DJ+05].

2.2.2 Run Time Search
Besides static binding the search functionality of a registry can also be used for dynamic
binding. We will speak of dynamic binding if the client application calls a service interface as
defined by an existing template at run time. Such a template is called tModel in the UDDI
standard. The service template can be implemented by more than one Web service. Thus, the
interface and the binding details are known to the requestor a priori. Only the exact service and
its provider are chosen at run time as shown in Figure 6. [ACK+04] consider this to be a realistic
scenario for development of service-oriented applications.

11 �

Requestor

tModel
Service Ax

Service A1

Service A2

Service A

Figure 6: Dynamic service call via tModel.

A variation of dynamic binding is suggested by [Ley03, WCL+05]. It uses a specialized
infrastructure, a service bus, for service selection. The service requestor sends a search
request to the service bus and describes the needed service by defining business goals and
policies. All matching services are considered to be equivalent from the requestor's point of
view. They are represented by a virtual service. The service bus chooses an appropriate
service, binds to it, invokes it, and delivers the result to the requestor. The choice the service
bus makes is guided by further policies such as execution costs or availability. This scenario is
depicted in Figure 7. The service bus is an infrastructure component that is delivered by
software vendors, for example, IBM WebSphere1 contains a service bus.

Requestor

Environ-
mental

Properties

Business
Properties

Service 1

Service 2

Service 3

Search Bind

Service Bus Virtual Service

Figure 7: Dynamic service selection via service bus according to [Ley03].

With an even higher degree of dynamics at run time the application searches for a service it has
never heard of before that is offered by a provider that is unknown to the consuming application.
The application chooses a suitable service among the results returned by the registry and binds
to it on the fly. This admittedly visionary scenario is currently considered to be unrealistic for
service-oriented application development. The behavior of such an application would be
unpredictable. It is unknown which parameters need to be passed. The application cannot be
thoroughly tested, it is undefined how to react if an exception is returned, and the service
consumer does not even have a proper service level agreement with the service provider.
[ACK+04] doubt that application designers will ever have use for such a degree of dynamics.

2.3 Implementations for Web Service Registries
So far, Web service registry usage scenarios and application use cases have been considered.
Next, different implementations are presented. One of the core Web service standards is UDDI

1 http://www-306.ibm.com/software/websphere/

� 12

[CHR+04]. It describes how to implement and interact with a service registry. The standard, its
possible use cases, interaction patterns and alternative standardizations efforts are presented in
the following sections.

2.3.1 The UDDI Standard
UDDI2 is an XML-based Web service standard that describes how to implement and interact
with a service registry. It is a framework that describes which data structures and APIs a Web
service registry must implement and offer to support Web service publication and search.

The information that UDDI offers is often compared to the white and yellow pages of a
telephone directory. White pages list companies and organizations, their contact information,
the services they offer and a short human readable description. Yellow pages categorize
service providers and services according to classification schemes or taxonomies. Additionally,
there are the green pages that contain technical information on services and their invocation.

To store these different kinds of information, UDDI uses data structures that are schematically
depicted in Figure 8. Each information type, businessEntity, businessService, bindingTemplate
and tModel, has a unique key. A businessEntity can contain one or more businessServices, a
businessService comprises a list of one or more bindingTemplates. All three information types
may contain references to one or more tModels. tModels may be referenced by more than one
UDDI entry.

business Entity
- Name
- Description
- Contacts
- Identifiers
- Categories

businessService
- Name
- Description
- Categories

bindingTemplate
- Description
- Access Point
- Categories
- References to tModels

tModel
- Name
- Description
- OverviewDoc
- Identifiers
- Categories

tModel
- Name
- Description
- OverviewDoc
- Identifiers
- Categories

Further
Information
on Provider

Side

Figure 8: Schematic overview of UDDI data structure according to [ACK+04].

� The businessEntity (white pages) contains information about the service provider such as
the name of the business, a short textual description, contact information (contact person
name, telephone number or e-mail address), business identifiers such as a tax ID or an ID

2 At the time of writing the current version of UDDI is 3.0.2. The current version can always be found at
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

13 �

based on another commonly accepted identification scheme, and a list of categories that
describe aspects of the business entity such as industry branch, product category or
geographic region. To define which kind of identification scheme or category system is used
pointers to further technical documentations, the tModels, can be included.

� The businessService (yellow pages) groups related Web services of a businessEntity.
Usually, it will only contain one Web service that is available under different addresses, in
different versions or under different protocol bindings. The businessService is described by
its name, a short textual description, and a list of categories that can be further explained by
references to tModels.

� The bindingTemplate (green pages) discloses the technical details to use a particular Web
service. This is essentially the access point to the Web service, a short textual description
and references to tModels that contain further technical information.

� The tModel is a generic container for any kind of technical model, e. g., a WSDL file or a
taxonomy definition. They can be referenced by multiple Web services and, thus, be
reused. A tModel consists of a name, a human readable description, references to further
documentation (e. g., text documents), identifiers that conform to an identification scheme,
and categories that follow a given classification.

UDDI itself offers different APIs that are themselves described as Web service interfaces.
Therefore, a UDDI is a special kind of Web service. The UDDI specification defines the following
APIs:

� The Inquiry API allows finding registry entries that fulfill given search criteria
(find_business, find_service, find_binding, find_tModel) and getting details about a specific
entry (get_businessDetail, get_ServiceDetail, get_bindingDetail, get_tModelDetail).

� The Publisher API is intended for service providers who want to add, or modify
(save_business, save_service, save_binding, save_tModel), and delete (delete_business,
delete_service, delete_binding, delete_tModel) registry entries.

� The Security API provides functionality to authenticate and authorize users based on
security tokens.

� The Custody and Ownership API enables the UDDI to transfer the custody and ownership
to another publisher.

� The Subscription API offers functionality to track changes within the registry, e. g., new,
modified, and deleted entries.

� The Replication API supports the synchronization of distributed UDDIs.

Every UDDI provider must offer the Inquiry API and the Publisher API. All other APIs are
optional.

� 14

2.3.2 Additional Standards
There are additional standards that address the Web service search problem in absence of a
central UDDI.

WS-Inspection [BBM+01] is an alternative specification in addition to UDDI. The UDDI
standard builds on centralized service registries that are in general open to every kind of
business. The UBR (see Section 2.1.1) as operated by IBM, Microsoft, SAP and NTT-
Communications has shown that this is possible. In parallel, other ways of publishing Web
services have emerged, e. g., Amazon Web services are published directly on the provider's
Web side. WS-Inspection addresses how to publish Web services in a decentralized but still
structured manner. Thus, clients can search the Web services of providers they trust. An
overview of the different strategies of UDDI and WS-Inspection is given in Figure 9.

CentralUDDIProviderProviderProviderpublishpublish

User

Central
UDDI

Provider
ProviderProvider

search

publishpublish

UDDI

User

Provider
ProviderProvider

searchsearch

WS-Insepction

Figure 9: UDDI versus WS-Inspection according to [DJ+05].

WS-Inspection is document-based: The service provider publishes a document with the name
“inspection.wsil” in the home directory of the Web server. This document contains a short
human-readable abstract, an arbitrary number of service elements and an arbitrary number of
link elements. Service elements consist of a short human-readable abstract, a name and a
description that contains technical information such as the namespace and the location of the
WSDL document that defines the service interface. Link elements consist of short human-
readable abstract and technical information, e. g., the namespace and the location of another
WS-Inspection document.

The service consumer reads the “inspection.wsil” document via HTTP and gets a list of all
available service and their WSDL files. The WS-Inspection standard is extensible, and there are
already pre-defined extensions to include UDDI and WSDL. The link elements permit to build
hierarchies of WS-Inspection documents.

WS-Dynamic Discovery [BKK+05] is a specification that defines a multicast discovery protocol
to find services in ad-hoc networks where Domain Name Services or directory services do not
exist. The protocol is not intended for Internet wide usage. It does not define any data model nor
any queries over rich meta-data. If a service consumer wants to find a service on the network it
sends a probe message to a multicast group. Matching services respond directly to the service
consumer. The service consumer then sends a resolution request message to the same group

15 �

and the matching service replies directly to the service consumer. If new services join the
network they send an announcement to the group to minimize polling. If a discovery proxy joins
the network the multicast discovery protocol is automatically abandoned to use the proxy
specific protocol. This protocol is suggested to be used for, e. g., discovery of low level
resources such as printers within a network.

Electronic business XML (ebXML)3 is a standardization initiative from the e-business domain
that started in 1999 to promote an open XML-based infrastructure for world-wide, interoperable,
secure and consistent exchange of information about electronic business. It supports trade
between companies of different sizes and from different geographic areas in a cheap and
efficient way by offering open XML standards for business-to-business (B2B) and business-to-
customer (B2C) transactions that replace proprietary, vertical solutions by a horizontal solution
spanning industry and trade. The standard consists of six specifications as depicted in Figure
10.

Business
Process

Core
Components

Collaborative
Partner

Messaging Registry

Implementation

OASIS UN/CEFACT
ebXML Specifications

Figure 10: ebXML specifications.

These specifications are compatible with the basic Web service standards WSDL, SOAP, and
UDDI and define the following standards for e-business [OAS06]:

� The Messaging Service defines a communication-protocol neutral method to exchange e-
business messages over SOAP 1.1. It is compliant with WS-Security, supports reliable
messaging and digital signatures.

� The Collaboration Protocol Profile and Agreement defines a bridge between technical
capabilities and partner expectations for business collaborations. It contains technical
capabilities of a business partner and the capabilities and preferences of protocol aspects
and properties for specific roles in component services and activities used in processes. It
enables monitoring of sessions and verification of delivery channel features. The
agreements contain data to configure shared aspects of business collaboration protocols.

� The Business Process Specification Schema defines a standard language to describe
interoperable business processes. It allows defining transaction patterns, partner roles,
documents and it helps to compose and monitor processes. The business process can also
involve Web services.

3 www.ebxml.org

� 16

� The Registry Service supports registering, locating, and accessing information resources
in a distributed environment.

� The Core Components Technical Specification presents a methodology for developing
semantic building blocks to represent the general business data types that are frequently
used. This enables reusable and commonly understandable concepts and data models. It
defines a fixed set of data types and naming conventions for consistent business
representation.

These standards are especially helpful for Web service detection in two ways: First, ebXML
registries can be regarded as Web services and can therefore be registered in UDDI registries,
thus, becoming available like any other Web service [ebX01]. Second, ebXML provides a
framework to define core components for e-business that can be re-used in any context, such
as the naming of data types in a WSDL document. Thus, the core components help to establish
naming conventions and semantics for WSDL documents and UDDI entries [WPA+01].

2.3.3 Web 2.0 Information Sharing
The interest in Web 2.0 [VH07] has risen ever since the term got wide attention after an article
by Tim O’Reilly [Ore05]. Its core has been defined as the read/write Web that is used by people
to create greater benefit for all [Hin06], also subsumed under “Harnessing Collective
Intelligence” [MuOr07]. A strong convergence is seen between principles from SOA and Web
2.0 [Hin07]. The differences between the two are important to understand the different attitudes
these approaches to service-orientation have.

SOA places much emphasis on a controlled environment, employing heavy-weight standards,
of which we have discussed UDDI in depth in the previous sections, but which has led to what is
called the Web services stack [Vos06]. This stack places standards and protocols first, and aims
at reusing code in the form of services. It does not in the first place deal with the organization,
the developer, or the user. Web 2.0, on the contrary, seems to neglect most of these standards
and instead employs light-weight models based on HTTP and the REST architecture style
[Fie00]. It is inherently user-oriented, as its values and patterns are said to be “the basis for the
next generation of the Internet” [MuOr07], which implies that they are steering the way
applications on the Web are developed.

An example of a technology pattern that is commonly applied in the Web 2.0 context is Ajax
[CPJ06]. Ajax leverages existing Web technologies, namely XML, JavaScript, and
XMLHttpRequest, by combining them in a meaningful way that can make Web pages with Ajax
more responsive, interaction with them more fluid and logical than those without. It marks a
point of departure from the page-based Web without (necessarily) breaking the structure of the
Web. Thus, Ajax enables Web sites to become application providers, delivering software as a
service, without making these unusable, because of the limitations of the browser. Essentially,
the range of tasks that the Web can efficiently support has grown with Ajax. Examples, include
online mail clients (e. g., mail.google.com and mail.yahoo.com), Web office suites (e. g. Zoho
and ThinkFree), and mapping applications (e. g., maps.google.com and maps.yahoo.com).

At another end, many Web pages have started to add community features to their service
portfolio, with the successful sites employing this for leveraging the value of the entire site. The

17 �

most prominent examples include Amazon, Delicious, Flickr, and MySpace. While for some of
these the community is everything, for others it is an essential feature, around some service. A
common way to exploit the community on a Web site is through tagging. Different
characteristics of tagging systems have been identified in the literature [MNBD06], which share
that they allow users to classify resources by freely chosen keywords, known as tags. The
important difference when compared to a hierarchical classification scheme is that no a priori
consensus is necessary; at best consensus on certain tags emerges over time. Then tags form
a flat namespace called a folksonomy. A folksonomy can be searched, thus supporting user-
created access-patterns to the resources of a site. Users of such sites have different
motivations for providing tags. One source of motivation stems from the ability to organize the
resources for personal use. The community aspect of tagging thus comes as a byproduct for
free.

Tagging represents a way in which users of Web sites share information, which allows reuse by
others. This is similar in spirit to Web sites providing access to their data and services (the
prominent examples being the same as above). This also allows for reuse by others, which is
precisely the original SOA idea. In the context of Web 2.0, this has seen a growing interest
under the name of mash-up. These combine typically freely available services to generate an
added-value. Of course, mash-ups are similar to composed applications, which is the term used
in SOA.

From our discussion above, it is fair to say that Web 2.0 and SOA are essentially concerned
with the same topic, namely information and software reuse. As we will see, they are, however,
working at different ends of the spectrum.

� 18

3 Service Discovery on the Public Internet - State of the Art
One and a half years after the survey reported in [BSF+06] has been published the various sites
are revisited in this section to compare them anew. In the following we will only mention URLs if
they deviate from the pattern “www.name-of-service.com”. The comparison includes: the UBR,
Xmethods (www.xmethods.net), WebserviceX (www.webservicex.net), WebserviceList,
StrikeIron, RemoteMethods, Woogle [DHM+04], WSDLicious (wsdlicio.us), ProgrammableWeb,
as well as general purpose search engines.

All services have been visited between the May 5th and 8th, 2007. If they were unavailable
during a first attempt they were revisited again later. If they were still unavailable they were
considered to be obsolete.

The list of comparison criteria as presented in Section 3.1 is enriched to include the latest Web
2.0 aspects. The universal business registry is presented in Section 3.2. Specialized search
engines and catalogues are presented in Section 3.3. Especially in this section the changes that
have taken place since the survey of [BSF+06] become apparent. General purpose search
engines are examined in Section 3.4.

3.1 Criteria for Comparison
In this section comparison categories are introduced that are later used to compare the different
Web service discovery approaches. The first group of criteria is constituted of basic features
that are needed for searching and gathering information about the available services in general.
The second group of criteria consists of features that describe the quality of service and ease of
use that the Web service search offers. Such criteria often influence the user decision and bind
the user to a specific search implementation. Groups one and two resume the comparison in
[BSF+06] to reveal trends and tendencies.

The third group of features newly includes Web 2.0 aspects that are considered to be useful for
Web service search but which may not always be employed yet. This group of features is
intended to reveal new opportunities that Web 2.0 has to offer for Web service discovery. This
group of features is not only derived by observation of current Web service search engine
implementations but also by the analysis of other popular Web 2.0 applications that support
searching for different types of information.

Basic features of Web service discovery include the search functionality itself, the number of
services available through a specific search approach, the availability of status information and
the possibility to discover different kinds of technical interfaces to one service.

� Registered information: Most search engines allow registering the service name, the
provider name and a description of the service. Other search engines also include
information about individual operations and user comments.

� Search functionality: This is the central functionality offered by a Web service search
engine or catalogue. Catalogue browsing and keyword search are the most common types
of search support that sustain a browse and drill-down search pattern. The search

19 �

functionality is also enhanced by service descriptions and a documentation of the individual
service operations.

� Number of Services: This is an indicator for the popularity of the search engine and the
likelihood of finding services. Scarcely populated catalogues are less likely to contain the
service sought than large catalogues.

� Service availability: If the search engine does not only contain the link to the service but is
also able to provide the information if the service is available this helps to filter out service
that are down or that are no longer maintained.

� Interface support: WSDL interfaces are the standard interfaces that Web service search
engines provide. Support for additional formats such as RSS or WS-Inspection documents
enhance the search capability.

Quality of service features of Web service discovery encompass additional functionality
such as test or demo functions and a WSDL parser as well as information about service costs.
These additional features help the user in making a choice.

� Test functionality: An additional feature is the availability of a test function that allows
calling the Web service operation with demo or dummy values to evaluate the behavior by
observation. This helps the programmer to determine availability and compatibility with
application needs without having to implement the interface.

� WSDL parser: A WSDL parser allows browsing the WSDL interface description in a user
friendly and comfortable way to find out more about the Web service.

� Information on terms of usage: Additional information that is usually not used for
searching in the first place is the terms of usage, including service costs. This is also an
important criterion for the end user to decide which service to choose if several are
available that offer similar functionality.

Under Web 2.0 features for Web service discovery we subsume those aspects that have of
late been attributed to the Web 2.0 approaches and techniques. We consider all forms of
community support, as well as information on service usage.

� Community support: This can come in many forms, which all have in common that they
support some form of social interaction. User feedback comes in the form of comments and
ratings. User interaction is supported in forums and wikis.

� Service usage: The combined use of services has come into focus in the context of Web
2.0 under the name of mash-ups. As an aspect of a service repository this is interesting as it
puts the usage of a service into focus. If a portal shows mash-ups next to services, these
can be considered as running usage examples, popularity measurements, and technology
showcases.

� 20

3.2 Universal Business Registry
The universal business registry implemented the use case of a UDDI as global registry until
January 2006. It was intended as a proof of concept by the initiating companies of the UDDI
standard, IBM, Microsoft, SAP and NTT-Communications. They operated a global UDDI
distributed onto four nodes for five years as shown in Figure 1. The UBR was shut down in
January 2006 because all participating companies regarded the proof of concept as successful
and the UDDI standard version 3 as stable. Since then, companies have started operating
separate UDDIs, e. g., uddi.sap.com.

This registry requires a user account for service registration and viewing WSDL files. The
search functionality is available without registration. It allows keyword based multi-language
search with wildcards for tModels, Business Entities, Business Services and Binding Templates.
Further, the same elements can be searched using a categorization-based browsing
functionality.

There is neither test nor user feed-back functionality available. Further, the user does not get
any information about the service costs or terms of use. The user is only able to see the
information as defined by the UDDI data structures. During the survey, the SAP UDDI
sometimes did not respond.

Although the UBR existed for several years, the idea of a global business registry has been
abandoned. Therefore, the UBR is considered to be obsolete.

3.3 Specialized Search Engines and Catalogues
A variety of search engines and catalogues have emerged that collect available Web services
from other sides or that rely on manual registration by service providers. Eight currently
available search engines and catalogues are briefly described to show which of the above
comparison criteria they are able to fulfill.

3.3.1 XMethods
XMethods (www.xmethods.net) is an online Web service catalogue maintained by XMethods,
Inc. that currently lists around 500 Web services.

Entries in this portal correspond to one SOAP binding defined in the WSDL file of a service
provider. Thus, several entries can be present for a single service. As an approximation, we
have nevertheless counted all entries as separate services for our comparison. The details
provided for an entry cover a link to the WSDL file and the possibility to analyze the WSDL,
which currently only shows how many operations are present. Attempts to drill-down to more
detailed information seem to only result in links to the original WSDL file. Additional information
includes the unique key, the owner with contact information, a link for more information, a short
and a detailed description, and usage notes.

There are two features that stand out, the first being the contributed clients section, which may
list programming libraries that access the service and function as proxies for specific
programming languages, full applications, and example code. Anyone can add clients after

http://www.xmethods.net/

21 �

registration. However, the number of services actually containing such clients is very low. The
other feature is the possibility to try out a service. For this the SOAPscope service of Mindereef
(www.mindreef.net) is used, which allows building requests, sending them, and reviewing the
intermittent documents.

The data of XMethods can be accessed through a variety of means in addition to the Web page.
There are SOAP, UDDI, WS-Inspection, DISCO, and RSS feed documents available. While the
first four of these allow accessing the entire database, the RSS feed always lists the last ten
entries added.

3.3.2 WebserviceX
WebserviceX (www.webservicex.net) is an online Web service catalogue maintained by Generic
Objects Technologies Ltd and lists currently round about 70 Web services.

Every service is described with a brief summary; the endpoint is given as well as the URI of the
DISCO and the WSDL document. Further it is possible to display the WSDL file. Users can
invoke the Web service in a test mode and get a sample description of the exchanged HTTP
GET, POST and SOAP messages. However, not all services provide such a test mode. Those
that do offer a test mode are not always straight forward to use, e. g., a power conversion
service that converts power values from one unit system to another does not tell the user how to
specify the power systems in the input fields for testing.

WebserviceX supports search by category browsing. A keyword based search is not possible.
Recently published services and some top Web services are listed as short cuts. It is not clear
what constitutes a top Web service, though. There is not any public usage statistic for individual
services.

The user can see in a separate list if a particular Web service is available and can send a bug
report to WebserviceX. This functionality is not directly connected to the information about the
individual Web services. WebserviceX offers a WSDL analyzer that shows the operations,
request and response messages of a WSDL file. It does not validate the WSDL file against the
given standard. Service costs and terms of usage are not provided.

3.3.3 WebserviceList
WebserviceList is an offer of IT Netix Inc. and currently lists around 280 Web services.

A Web service is described briefly and the time of the last update is given. Further, the provider
and its homepage, if available, are listed. The WSDL file is linked but status information is not
given. If the link to the WSDL file is broken this is not visible. Visitors can rate the Web service
and are prevented from rating a Web service several times. However, even if the Web service is
unavailable this is not necessarily reflected in the visitors’ rating.

WebserviceList supports key-word based search as well as category browsing. The keyword
search takes the Web service name and the textual service description into account.

http://www.mindreef.net/
http://www.webservicex.net/

� 22

Service costs, terms of usage, information on availability, a WSDL parser or validator, or
alternative interfaces are not supported. WebserviceList provides a link for help information or
test functionality which is more often than not misused for adding another link to the provider's
homepage or to the WSDL file.

3.3.4 StrikeIron
StrikeIron is a marketplace for Web services maintained by StrikeIron, Inc. It currently lists
round about 70 Web services. The company’s service is to handle authentication, billing and
accounting, usage reporting, user tracking, security, uptime monitoring, and other productivity
monitoring capabilities for their clients who offer their Web services through StrikeIron.

For every Web service they list the service name, the version, the provider with a link to the
provider’s home page, and the availability of the service. A brief service description is given and
the WSDL file is linked. On a separate page more details concerning the terms of usage and the
service costs are given. Commercial benefits, the target audience of the Web service, and other
marketing advertisements are also added.

The WSDL file of the service can be displayed. Further, the file can be analyzed in a GUI that
also allows invoking individual Web service operations for testing. Every operation is also
described briefly. If the user enters invalid input data for testing an error message is displayed
that describes the expected input format.

StrikeIron supports category browsing and keyword based search. Bug reporting or user feed-
back is not supported.

3.3.5 RemoteMethods
RemoteMethods is a Web service directory by InfoGenius Inc. that lists round about 370 Web
services of various providers.

For every Web service, remote methods lists its name, a short description, the time of the last
update, the price, the user rating, the number of hits during the day and the number of overall
hits for the service. Additional pricing information is displayed on a separate page; the WSDL
file is linked and can be displayed as plain XML files.

The users can review the Web services writing an anonymous or an authenticated comment.
Further, they can give a score to the Web service. It is also possible to report bugs. Registered
users can also maintain their own list of favorite Web services with RemoteMethods.

RemoteMethods supports category browsing and keyword based search. Results can be sorted
by name, price, rating, version, hits, and date. Alternative interfaces are not supported. Test
functionality is not available.

3.3.6 Woogle
An alternative to Web service catalogs are search engines, specialized on Web services. A
research prototype called Woogle (data.cs.washington.edu/webService/) has been implemented

http://data.cs.washington.edu/webService/

23 �

to augment keyword based search with template search and composition search as
documented in [DHM+04]. It collects Web services from SalCentral, WebserviceList, XMethods,
and RemoteMethods. The project supporting the development has run out and Woogle is no
longer online. We nevertheless present some aspects of this application as found in an earlier
visit here, as these are of interest due to the different characteristics of Web service search.

Woogle provides the services’ name and provider as well as a description. Additionally the
services status is indicated and the WSDL file is linked. A test feature is also available for many
services. The WSDL file can be viewed and validated.

Service costs, terms of usage, usage statistics, bug reporting, user feed-back or rating
mechanisms, and alternative interfaces are not supported.

The template search is the distinguishing search feature of Woogle. The user can specify a
Web service template by defining the names of the desired functionality as well as the names of
the input and output parameters. This template is then used to search for Web services with
similar names. Further, this algorithm can also be used to search for Web services that are
suitable to be composed with a given service. In this case, composition is limited to
concatenation. The search returns Web services whose input parameters match the output
parameters of the search template or vice versa.

The underlying algorithm is a clustering algorithm. As similarity measure Term
Frequency/Inverse Document Frequency (TF/IDF) [SB88] is used. To compute the similarity
between two Web services the similarity of their operations and of their input and output
parameters is computed. The computed similarities are combined linearly according to chosen
weights.

A Web service operation op is associated with two vectors i = (pi, ci, op) and o = (po, co, op)
consisting of the input and output parameter names pi, po and the concepts ci, co they belong to.
In a preprocessing step, parameter names are normalized, stop words are removed and
artificial names such as, e.g., ``LocalTimeByZipCode'' are broken into individual terms. This
turns the parameter list into a bag of words. Then the TF/IDF between the two input bags and
the two output bags is computed. In a next step, an agglomerative clustering algorithm is
applied to cluster the terms in each bag into semantically meaningful concepts. Then, the terms
are replaced by the concepts they represent and the TF/IDF is computed for the input and
output concepts respectively.

A Web service operation is identified by the textual description of the Web service it belongs to,
by the textual description of the operation itself and by the input and output parameters. The
similarity of the operation description is computed by taking the tokenized operation name, the
WSDL documentation and the input and output terms, computing the TF/IDF on the two bags of
words. The similarity between web service descriptions is computed similarly. Here, the bag of
words is computed using the tokenized web service name, the WSDL document, the UDDI
description, the tokenized operation names and the input and output terms. More details are
provided in [DHM+04].

� 24

3.3.7 WSDLicious
This site (wsdlicio.us), presents a list of WSDL files in a feature-reduced del.icio.us manner. The
site currently lists 63 entries, which seem to come from less than five people.

After registering one can add a link to a WSDL through the site or by adding a Bookmarklet to
one’s browser. To upload a WSDL one enters its address, a description, and freely chosen tags.
All this information is displayed in the main list. Additionally, the operations provided by the
services are shown. One can navigate through the list of services, by using tags, usernames, or
operation names as categories.

WSDLicious provides an additional endpoint for each service, through which it can be called
with WS-Reliable Messaging, thus guaranteeing delivery, but this function is broken at the time
of writing. The last entry has been added to WSDLicious on August 28, 2006.

3.3.8 ProgrammableWeb
ProgrammableWeb, run by John Musser, is a site that aims at collecting information on and
covering news about mash-ups and Web 2.0 APIs. It currently lists 429 services. The site
stands out from the others in this category as it equally focuses on APIs and what (publicly)
results from them, namely mash-ups.

Regarding services the information offered is the basics, such as name, address, and
description, but it also has more advanced information such as information on protocols,
functionality, security, support, and licensing. Moreover, there is a rating, comments, related
links, and there is a list of mash-ups that have been built on top of this service. In addition to this
information that is directly available on the details page, blog entries from the
ProgrammableWeb blog are linked, which cover the respective service.

Just as service, mash-ups can be rated and commented. Developers who have registered their
mash-ups are also listed in a developers section of the page. Both services and mash-ups can
be searched, and they are categorized using tags.

The ProgrammableWeb blog covers the news about mash-ups and Web 2.0 services. It too is
categorized via tags, entries frequently link to mash-ups and APIs covered in the other sections,
and individual entries can be commented by the readers.

3.3.9 Obsolete Registries
Since the [BSF+06] report, some of the registries mentioned have shut down due to limited
success. The list of recently failed privately managed Web service registries includes
Bindingpoint, Salcentral, and eSynaps. Bindingpoint officially admits its shut-down. Salcentral
has shrunk to become an advertisement place for books, seminars, and IT-service providers for
Web services. eSynaps does still list a few WSDL files, but its search functionality returns
arbitrary Web pages not limited in any way to Web services or related topics. It looks like this
page was edited last in 2004.

http://www.wsdlicio.us/

25 �

3.4 Search Engines
Instead of using specialized search engines and manually maintained catalogues an alternative
way of discovering Web services makes use of general purpose Web service search engines.
To highlight the characteristics of this approach, we take Google Search as an example.

Without using any special functions that the search engine may provide one way to search for
services, is of course to search for the keywords, one expects to be contained in pages
describing desired services. Using “service” as a keyword is bound to yield a lot of superfluous
results due to the broad sense of the term. Using more specific terms such as “WSDL” or “Web
service” is probably going to produce more adequate results. The important question is then
how to distinguish between pages that only talk about a service, but do not provide any and
those that do provide something.

On way this distinction could be possible is by restricting the results to resources that are WSDL
documents. In the case of Google, this can be done by adding “filetype:wsdl” to the keywords
one wants to use to find the service (this approach of course also works for WSIL files). Using
only the aforementioned term one can retrieve the number of WSDL files Google’s index
contains. At the time of writing this number was about 34 100.

One has to mention that the number of WSDL files found through such a search does not
translate to the same number of services: a WSDL file could be present several times, it could
be just an example file pointing to invalid endpoints, or the endpoints could be out of date. It is
beyond the scope of this report to conduct a thorough analysis of the search results. To
nevertheless get a feel for the possible pitfalls we searched for “filetype:wsdl” and looked at the
first ten results. Five of these were in fact WSDL documents, the rest were plain Web pages. Of
the five WSDL files, we were able to call one service successfully, the other four resulted in
various errors: the links in the WSDL were local (2x), server error (1x), connection timeout (1x).
We expect this tendency to hold also on the larger scale.

� 26

4 Evaluation
In this section the results of the above analysis are summarized and the different Web service
search approaches are compared according to the criteria developed before.

Table 1 presents a summary of our analysis. For every service, two rows are included: the first,
row represents the results of [BSF+06] (plus historical information for the new criteria where
these were accessible), the second row summarizes the results of the current survey. We have
not listed the Salcentral and eSynaps, since these proved to be unreachable or irrelevant in
[BSF+06] already, and we consider them obsolete.

The columns represent the evaluation criteria from the three groups listed in Section 3.1. The
column “Search” takes one or more of the following entries: search (keyword search), list (listing
of all services), categories (browsable categories), and template (template-based search). The
column “Number of services” contains the absolute numbers and also shows the change that
has taken place in the number of services since the first survey of [BSF+06]. The numbers
should be taken with a grain of salt, as some numbers from [BSF+06] seem to have been only
estimates, and the number of services is not accurately countable for pages that do not have a
full list. “Alternative interfaces” contains additional possibilities for accessing the registry. Note
however, that interfaces may have different capabilities although the protocol is the same.
“Community support” lists which mechanisms the site provides that can foster the building of a
community. It does not give information on if and how these possibilities are actually used. All
other columns should be self-explanatory. Since “Service usage” was not a criterion in [BSF+06]
there are entries were this item is unknown.

Overall, the number of publicly available Web service registries as well as the number of
available services has decreased. Except for StrikeIron and ProgrammableWeb, all registries
make a neglected impression. The interest in this topic seems to remain nevertheless, as the
increased number of results on Google suggests when searching for WSDL files.

The UBR registry is the only approach that has tried to implement the UBR usage scenario as
described in Section 2.1.1. The other registries are intended to be open to a large community
but they are not synchronized and connected with each other. Therefore, they support the UBR
usage scenario in a restricted way. A business specific marketplace as described in Section 0 is
not among the public search catalogues. Only StrikeIron might be regarded as an attempt to
realize this application scenario domain independently because it handles quality control and
administration for their service providers and their service consumers, which is why StrikeIron
can be considered a service broker.

Most service registries contain Web services that are only poorly described, links to provider
home pages are broken, the services are not available and links to WSDL files are broken, too.
This indicates that the quality and availability of registered services is hard to guarantee. As
long as the registry provider does not care about these quality aspects the registry does not
inspire trust. Also test and demo functionality as well as user feed-back mechanisms do not
seem to ameliorate the quality problems. Public quality control only works in those places were
a great public is attracted, as projects such as Wikipedia show.

27 �

Furthermore, many services offer functionality that is not of interest to a large community or that
is too trivial, such as most conversion services. If the services are not of interest, the Web
service registry degenerates to a playground. Services of interest do not need a central registry
to become known. They are connected with the name of the service provider such as the
Amazon E-Commerce services. Here, e. g., web shop owners can access sales statistics via
remote procedure call. Such a service provides added value to a large community. It can be
regarded as an example for the B2B usage scenario as described in Section 2.1.4. If the
services offered by a registry do not provide added value the registry does not attract
customers.

Most registries are intended to be used by users who already know that they will find the service
they are looking for under a given category or with the right keyword. Consumers who seek
information on how to solve a design problem at hand or who are not sure if they want to use a
Web service at all do not find help in most registries. ProgrammableWeb is an exception that
reveals the typical Web 2.0 features of social interaction. Working programming examples, the
mash-ups, and the possibility to share experiences in discussion forums are important
additional features that are not included in standards such as UDDI.

Overall, Web service registries on the public Internet suffers from a lack of acceptance. It can be
seen that technical standards are not as important as providing additional functionality around
such registries. Technical standards alone are only the backbone for the realization of a Web
service registry. They describe the minimum of functionality that must be available, the least
common denominator. Additional services could include quality control, administration and
payment transactions as offered by StrikeIron or community specific knowledge and experience
sharing as offered by ProgrammableWeb.

However, these findings only cover the public part of Web service registries. This survey does
not allow drawing conclusions about the usage of Web service registries in company-internal
SOAs.

� 28

Table 1: Overview of Web service discovery resources (as of May 8, 2007).

Name Search Number
of

services/
change

Availability
information

Alternative
interfaces

Test/
demo

WSDL
parser

Terms
of use/
price

Community
support

Service
usage

(mash-
ups)

search,
categories

- no SOAP no no no - no UDDI Business
Registry

offline

list 3 124 no SOAP,
UDDI, WS-
Inspection,

DISCO,
RSS

yes yes no - yes XMethods

~ 500
(-84%)

~ ~ ~ ~ ~ ~ ~

search,
categories

4 056 imprecise - yes yes yes ratings,
reviews

? Binding-Point

offline

search,
categories

70 no RSS example
SOAP
docs

yes no - no WebserviceX

~ 71 (+1%) ~ ~ ~ ~ ~ ~ ~

search,
categories

1 000 no RSS no no no - no Web Service
List

~ 280
(-68%)

~ ~ partial ~ ~ ~ ~

search,
categories

1 000 yes SOAP yes yes yes - no StrikeIron

~ 70 (-93%) ~ - ~ ~ ~ ~ ~

search,
categories,
templates

885 yes - partial imprecise no - ? Woogle

offline

search,
categories

- no - no no no ratings,
reviews

no Remote-
Methods

~ 372 (-) ~ ~ ~ ~ ~ ~ ~

list,
categories

45 no - no no no - no WSDLicious

~ 63 (+40%) ~ ~ ~ ~ ~ ~ ~

search, list,
categories

86 no RSS no no yes blog, ratings,
comments,

forum,
developer list

yes Programmable
Web

~ 429
(+500%)

~ ~ ~ ~ ~ ~

search 25 600 imprecise SOAP no no no - no Google

~ 34 100
(+25%)

~ Ajax ~ ~ ~ ~ ~

29 �

5 Conclusion and Outlook
The above discussion and its results show that three aspects must be taken into consideration
for public Web service registries: the type of service offered, the quality of the offer, and the way
the services are presented to support customer decisions.

Type of service A central Web service registry is not a success factor per se. The
central reachability alone is not decisive. Far more, it is important that the Web services
themselves provide added value for business. There is no need for many different unit
conversion Web services. They do not represent added value but are easy to program and are
already contained in many standard software tools.

Information is a value in itself and access to crucial business information is a service in itself. A
convenient way of delivery today is via the Internet, as it gets rid of the problem of updating
local databases (that one has with information stores delivered via DVD for example), and
allows a pay-per-use payment model. Therefore we see information providing services are good
candidates for successful Web services, independent of their location in a central registry or on
a provider page, as long as the offered information is of value.

Further, domain knowledge and highly domain specific functionality is another good of value
that can either be bought with expensive software suites or on a function-by-function basis via
the Internet. However, these are still niche services because domain specific functionality
usually operates on domain specific and maybe even confidential data. Therefore such domain
specific services are only scarcely found on the public Internet. For this type of service, the
global usage scenario does not seem to be suitable. A B2B or Intranet scenario is more likely.

Quality of the offer For a registry to be attractive to developers, the services offered must
be available, the registry provider must ensure their technical quality and the services must be
described in such a way that they are easily integrated into other applications. Test functionality
must be available in such a way that testing is possible without reading the technical interface
description.

The attractiveness of a registry can be increased by offering additional services, as was seen
with StrikeIron and ProgrammableWeb. However, even with high quality services and
comfortable additional services for service providers and customers, a registry must first of all
be able to offer services that are of interest. If this is not fulfilled even the best designed registry
will fail.

Presentation As the above analysis has shown, programmers searching for Web
services do not go straight to a Web service registry or to a service provider they know during
the first stages of searching. In an early stage of a software development project, the make or
buy decision must be made. On a smaller scale, this is the same with the decision for or against
a Web service or Web 2.0 component. Web service registries do not support this early decision
stage. As ProgrammableWeb shows the early decision stage needs to answer such questions
as “Has anybody before used a Web service for the problem I need to solve?”, “Was this
successful?”, “What do I have to be aware of?”, “Where do I find successfully running
examples?”, “Which services exist?”, or “Which providers are there?” Only the last two
questions can be answered through a Web services registry approach. The first questions seek

� 30

experiences and advice from members of a peer-group of programmers. Sharing knowledge
and experiences is the strong feature of Web 2.0. In this aspect, Web pages such as
ProgrammableWeb are complementary to the Web service registry approach.

The analysis shows that there are currently no successful Web service registries that base their
strategy on being an access point for service search alone. It seems necessary to add a value
to that to be of lasting interest to developers. StrikeIron adds a broker service for providers,
which may be interesting to the user also, since there is a third party which is interested in
keeping the services in good shape. However, the small number of services offered limits the
attractiveness of the site. ProgrammableWeb adds a community to the registry, which is
maintained with incentives such as visibility on the site or the site’s blog. It remains to be seen
whether this site can remain attractive and continue growing beyond the hype of Web 2.0.

31 �

References
[ACK+04] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Concepts,

Architectures and Applications. Springer-Verlag Berlin, Germany, 2004.

[BBM+01] Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W. A., Pharies, S.: Web Services
Inspection Language 1.0 (WS-Inspection). IBM, Microsoft, 2001. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
inspection.asp (2007/05/30).

[BH06] Baroudi, C., Halper, F.: Executive Survey: SOA Implementation Satisfaction. Hurwitz
and Associates 2006. URL: http://www2.mindreef.com/ hurwitz.aspx?cid=aebc8bb4-
8a15-48fa-94f3-473f9fc4c96c (2007/05/30).

[BKK+05] Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T., Lovering, B. et al.: Web Services
Dynamic Discovery (WS-Discovery). Microsoft, 2005. URL:
http://schemas.xmlsoap.org/ws/2004/10/discovery/ws-discovery.pdf (2007/05/30).

[BSF+06] Bachlechner, D., Siorpaes, K., Fensel, D., Toma, I.: Web Service Discovery - A
Reality Check. Technical Report DERI-TR-2006-01-17, 2006.

[CPJ06] Crane, D., Pascarello, E., James, D. : Ajax in Action. Manning, Greenwhich, CT, 2006.

[CHR+04] Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, UDDI Spec.
Technical Committee Draft, OASIS 2004. URL: http://uddi.org/pubs/uddi_v3.htm
(2007-05-30).

[DHM+04] Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In Proc. of VLDB 2004, pp. 372-383.

[DJ+05] Dostal, W., Jeckle, M., Melzer, I, Zengler, B.: Service-orientierte Architekturen mit Web
Services. Konzepte-Standards-Praxis. Spektrum Akademischer Verlag, München,
Germany, 2005.

[DSV04] Deutsch, A., Sui, L., Vianu, V.: Specification and Verification of Data-driven Web
Services. In Proc. of PODS 2004, pp. 71-82.

[ebX01] ebXML Registry Project Team: Using UDDI to Find ebXML Reg/Reps. OASIS,
UN/CEFACT 2001. URL: http://www.ebxml.org/specs/rrUDDI.pdf (2007/05/30).

[Fie00] Fielding, R.: Architectural Styles and the Design of Network-based Software
Architectures, PhD Thesis, University of California, Irvine, 2000. URL:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm (2007/05/22).

[FK05] Fan, J., Kambhampati, S.: A Snapshot of Public Web Services. SIGMOD Record 34(1),
2005, pp. 24-32.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-inspection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-inspection.asp
http://www2.mindreef.com/%20hurwitz.aspx?cid=aebc8bb4-8a15-48fa-94f3-473f9fc4c96c
http://www2.mindreef.com/%20hurwitz.aspx?cid=aebc8bb4-8a15-48fa-94f3-473f9fc4c96c
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf
http://uddi.org/pubs/uddi_v3.htm
http://www.ebxml.org/specs/rrUDDI.pdf
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm

� 32

[Gra01] Graham, S.: The Role of Private UDDI Nodes in Web Services, Part 1: Six Species of
UDDI. IBM Technical Report 2001. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-rpu1.html (2007/05/30).

[GTB01] Gonzlez-Castillo, J., Trastour, D. and Bartolini, C.: Description logics for matchmaking
of services. In KI-2001 Workshop on Applications of Description Logics, September
2001.

[Hin06] Hinchcliffe, D.: A round of Web 2.0 reductionism. In Entreprise Web 2.0 Blog, 2006.
URL: http://blogs.zdnet.com/Hinchcliffe/?p=41 (2007/05/22).

[Ley03] Leymann, F.: Web Services: Distributed Applications Without Limits. In Proc. of BTW
2003, pp. 2-23.

[LH03] Li, L. and Horrocks, I: A software framework for matchmaking based on semantic web
technology. In Proc. of the 12th International Conference on the World Wide Web,
Budapest, Hungary, May 2003.

[LLG+03] Latimer-Livingston, N. S., Graham, C., Correia, J. M., Schroder, N.: Survey Shows
Why Firms Undertake Web Services Projects. Gartner Group 2003. URL:
http://www.gartner.com/DisplayDocument?doc_cd=116069 (2007/05/30).

[MO07] Musser, J., O’Reilly, T.: Web 2.0. Principles and Best Practices. O’Reilly Media,
Sebastopol, USA, 2007.

[MNBD06] Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy,
Flickr, academic article, to read. In Proc. of the 17th ACM Conference on Hypertext
and Hypermedia, Odense, Denmark, August 2006.

[MSC03] Microsoft Corporation: Enterprise UDDI Services: Three Usage Scenarios, 2003. URL:
http://www.microsoft.com/windowsserver2003/techinfo/overview/ uddiscen.mspx
(2007/05/30).

[MSC03b] Microsoft Corporation: UDDI Services: Qwest Technical Case Study. 2003. URL:
http://www.microsoft.com/windowsserver2003/techinfo/overview/ qwest.mspx
(2007/05/30).

[OAS06] The OASIS ebXML Joint Committee: The Framework for eBusiness. An OASIS White
Paper, 2006. URL: http://www.oasis-open.org/committees/
download.php/17817/ebxmljc-WhitePaper-wd-r02-en.pdf (2007/05/30)

[Ore05] O’Reilly, T.: What is Web 2.0 – Design Patterns and Business Models for the Next
Generation of Software. In Tim O’Reilly (Blog), 2005. URL:
http://www.oreillynet.com/pub/a/ oreilly/tim/news/2005/09/30/what-is-web-20.html
(2007/05/22)

[PKP+02] Paolucci, M., Kawamura, T., Payne, T. and Sycara, K.: Semantic Matching of Web
Services Capabilities. In I. Horrocks and J. Handler, editors, 1st Int. Semantic Web
Conference (ISWC), 2002, pages 333-347.

http://www-128.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www-128.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://blogs.zdnet.com/Hinchcliffe/?p=41
http://www.gartner.com/DisplayDocument?doc_cd=116069
http://www.microsoft.com/windowsserver2003/techinfo/overview/%20uddiscen.mspx
http://www.microsoft.com/windowsserver2003/techinfo/overview/%20qwest.mspx
http://www.oasis-open.org/committees/%20download.php/17817/ebxmljc-WhitePaper-wd-r02-en.pdf
http://www.oasis-open.org/committees/%20download.php/17817/ebxmljc-WhitePaper-wd-r02-en.pdf
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

33 �

[SB88] Salton, G., Buckley, C.: Term-Weighting Approaches in Automatic Text Retrieval. In
Journal of Inf. Process. Manage. 24(5) 1988, pp. 513-523.

[TSG02] The Stencil Group, Inc.: The Evolution of UDDI. UDDI.org White Paper, 2002. URL:
http://uddi.org/pubs/the_evolution_of_uddi_20020719.pdf (2007/05/30).

[Vos06] Vossen, G.: Have Service-Oriented Architectures Taken a Wrong Turn Already? In
Proc. of the IFIP TC 8th International Conference on Research and Practical Issues of
Enterprise Information Systems (CONFENIS), Vienna, Austria 2006.

[VH079] Vossen, G., Hagemann, St.: Unleashing Web 2.0 – From Concepts to Creativity.
Morgan Kaufmann Publishers, San Francisco, 2007.

[WCL+05] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D. F.: Web
Services Platform Architecture. SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall Upper Saddle River, NJ, 2005.

[WPA+01] Whittle, J., Probert, S., Adcock, M., Boxman, G., Becker, T.: Core Component
Overview. Version 1.05 ebXML Core Components, OASIS, UN/CEFACT, 2001. URL:
www.ebxml.org/specs/ccOVER.pdf (2007/05/30).

http://uddi.org/pubs/the_evolution_of_uddi_20020719.pdf
http://www.ebxml.org/specs/ccOVER.pdf

� 34

Working Papers, ERCIS

Nr. 1 Becker, J.; Backhaus, K.; Grob, H. L.; Hoeren, T.; Klein, S.; Kuchen, H.; Müller-Funk,
U.; Thonemann, U. W.; Vossen, G.: European Research Center for Information
Systems (ERCIS). Gründungsveranstaltung Münster, 12. Oktober 2004. October
2004.

Nr. 2 Teubner, R. A.: The IT21 Checkup for IT Fitness: Experiences and Empirical Evidence
from 4 Years of Evaluation Practice. March 2005.

Nr. 3 Teubner, R. A.; Mocker, M.: Strategic Information Planning – Insights from an Action
Research Project in the Financial Services Industry. June 2005.

Nr. 4 Vossen, G.; Hagemann, S.: From Version 1.0 to Version 2.0: A Brief History Of the
Web. January 2007.

Nr. 5 Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality Check 2.0. July
2007.

	 Working Paper Sketch
	1 Introduction
	2 Fundamentals
	2.1 Web Service Registry Scenario Alternatives
	2.1.1 Universal Business Registry (UBR)
	2.1.2 Domain Specific Business Registry
	2.1.3 Intranet Service Registry
	2.1.4 B2B and EAI Service Registry

	2.2 Web Service Search Use Cases
	2.2.1 Design Time Search
	2.2.2 Run Time Search

	2.3 Implementations for Web Service Registries
	2.3.1 The UDDI Standard
	2.3.2 Additional Standards
	2.3.3 Web 2.0 Information Sharing

	3 Service Discovery on the Public Internet - State of the Art
	3.1 Criteria for Comparison
	3.2 Universal Business Registry
	3.3 Specialized Search Engines and Catalogues
	3.3.1 XMethods
	3.3.2 WebserviceX
	3.3.3 WebserviceList
	3.3.4 StrikeIron
	3.3.5 RemoteMethods
	3.3.6 Woogle
	3.3.7 WSDLicious
	3.3.8 ProgrammableWeb
	3.3.9 Obsolete Registries

	3.4 Search Engines

	4 Evaluation
	5 Conclusion and Outlook
	References

