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Chapter 1

Introduction

Parallel programming of MIMD machines with distributed memory is typically based on standard
message passing libraries such as MPI [1], which leads to platform independent and efficient
software. However, the programming level is rather low, and the development of a parallel appli-
cation can be a quite complicated task: Programmers have to think about how to decompose the
problem and distribute it across the collaborating processes, develop a communication protocol to
synchronize processes by passing messages, and eventually integrate the partial solutions into a
final one. Due to the low programming level, programmers have to fight against low-level commu-
nication problems such as deadlocks, starvation, or overlapping communication and computation.
Moreover, the program is split into a set of processes which are assigned to the different proces-
sors. Like an ant, each process only has a local view of the overall activity. A globel view of the
overall computation only exists in the programmer’s mind, and there is no way to express it more
directly on this level. Debugging such applications borders on looking for the famous needle in the
haystack since errors do not occur deterministically. Although debuggers for parallel applications
have been developed, implementing a parallel program remains tedious and error-prone.

For this reasons many approaches have been suggested which provide a higher level of
abstraction and an easier program development. The skeletal approach to parallel program-
ming proposes that typical communication and computation patterns for parallel programming
should be offered to the user as predefined and application independent components which can
be combined and nested by the user. These components are referred to as algorithmic skeletons
[2, 3, 4, 5, 6, 7, 8]. By providing application-specific parameters to these skeletons, the user can
adapt them to the considered parallel application without bothering about low-level implemen-
tation details such as synchronization, interprocessor communication, load balancing, and data
distribution. Efficient implementations of many skeletons exist, such that the resulting parallel
application can be almost as efficient as one based on low-level message passing.

From a conceptual point of view, skeletons can be divided into data parallel and task parallel
ones. Data parallel skeletons such as map and fold operate on a distributed data structure and
manipulate its elements in parallel [8, 9, 10, 11, 12, 13]. Task parallel skeletons create a system
of processes communicating via streams of data by nesting predefined process topologies such
as pipeline, farm, branch&bound, and divide&conquer [2, 3, 5, 8, 11, 14].

Skeletons can be understood as domain-specific languages for parallel programming. Sev-
eral implementations of algorithmic skeletons are available. They differ in the kind of host lan-
guage used and in the particular set of skeletons offered. Since higher-order functions are taken
from functional languages, many approaches use such a language as host language [11, 13, 15].
In order to increase the efficiency, imperative languages such as C and C++ have been extended
by skeletons, too [8, 9, 10, 16, 17, 18]. Moreover, there are implementations offering skeletons as



� 6

a library rather than as part of a new programming language [3, 6, 16].

The Edinburgh Skeleton Library eSkel [3, 5, 14, 19, 20] is a structured parallel programming
library written in C on top of MPI. In its current version eSkel provides the following skeletons:
Pipeline, Farm, Butterfly (Divide & Conquer), Deal (sort of Farm) and HaloSwap. The library is
built on top of two fundamental concepts, namely the nesting mode and the interaction mode. The
former can either be set to transient or persistent and affects the nesting of (different or identical)
skeletons. The latter can either be set to implicit or explicit and is used to control the temporal
and spatial interaction of each skeleton. eSkel does not support any data parallel skeletons.

The MaLLBa [2] library offers skeletons for solving optimization problems. It has been devel-
oped by three working groups at Malaga, La Laguna and Barcelona and offers exact, heuristic and
hybrid solving techniques. In order to solve a problem exactly, skeletons for Divide & Conquer,
Branch & Bound and Dynamic Programming are supported. Heuristic techniques are facilitated
by skeletons for hill climbing, metropolis, simulated annealing, tabu search, genetic and memetic
algorithms. Hybrid approaches combine exact and heuristic techniques, e.g. genetic algorithms
and simulated annealing, branch and bound and simulated annealing, or genetic algorithms and
branch and bound. Just like eSkel, MALLBA does not support any data parallel skeletons at all.

One of the few libraries to support both task and data parallel skeletons is the Pisa Parallel
Programming Language P3L [21, 22, 23]. The computational model underlying P3L provides a
few primitive skeletons, abstracting both task and data parallelism, and the ability to nest them
to express complex application structures. The language provides two task parallel skeletons in
terms of a Farm and a Pipe and numerous data parallel skeletons like map, reduce, and scan.
Additionally, P3L offers so-called control skeletons such as Loop and Seq. Since P3L does not
support different data structures, all data parallel skeletons are limited to work on arrays of data
elements.

Lithium [24, 25] is skeleton library written in Java and includes common task and data parallel
skeletons such as Pipeline, Farm, Map, Reduce and Divide and Conquer. Muskel [26] is a pure
Java/RMI skeleton library derived from Lithium that targets workstation clusters, networks, and
grids. Both libraries are implemented exploiting (macro) data flow technology, rather than the
more usual skeleton technology relying on the use of implementation templates.

Moreover, the skeleton library SkeTo [27] is to be mentioned. The resourch group from Tokyo
focuses on implementing different data structures for data parallel skeletons like lists, trees, and
(sparse) matrices [28]. Task parallel skeletons are not provided. As a unique feature, SkeTo offers
a fusion based optimization mechanism which merges successive function calls into a single one
such that the execution time can be reduced significantly. Although a data structure for sparse
matrices is supported, this data structure is not as flexible as our approach since neither the data
type, the compression nor the distribution scheme for the submatrices (SkeTo calls them blocks)
can be user-defined (cf. Section 3.4).

The Data parallel Template Library (DatTel) [16, 17] extends the Standard Template Library
(STL) of the C++ standard by parallel skeletons. An application based on DatTel can run on both
distributed and shared memory machines without any changes to the source code. In [29, 30],
skeleton-based programming models for grid computing are presented. The system discussed in
[30] is based on Java and its Remote Method Invocation (RMI) API. The HOC-SA approach [29]
provides skeletons in a similar manner. However, this system is designed to be used in the Open
Grid Services Architectur (OGSA) [31]. The skeletal parallelism homepage [32] contains links to
virtualy all groups and projects working on skeletons.

The approach described in the sequel is an enhancement of the skeleton library introduced
in [5, 6, 33] and based on the results of our latest research [34, 35, 36, 37, 38, 39, 40, 41]. The
Münster Skeleton Library Muesli offers data and task parallel skeletons in terms of a program
library implemented in C++ and uses the current standard message passing interface MPI to
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facilitate the communication between processes. Based on the two-tier model taken from P3L
[8], atomic task parallel processes can internally be data parallel. Programs developed with the
Münster skeleton library are platform independent (due to MPI) and can be executed on every
system for which an MPI implementation and a C++ compiler exist. Muesli is intended to form
some sort of additional abstraction layer. From a programmer’s perspective, the whole inter-
process communication is completely transparent, since these things are hidden and taken care of
inside our skeleton library. Thus, the programmer of a parallel application is freed from bothering
with low-level implementation details such that the probability of error is reduced to a minimum.
In short, the benefits of our skeleton library are:

� Sequential programming style. Developing a parallel application is almost as easy as de-
veloping a serial one. This is due to the fact that the programmer needs not bother about
coordinating processes since these details are taken care of inside our skeleton library.

� Easy development of parallel applications. Since Muesli is provided as a C++ library, ev-
ery programmer familiar with this language can develop a parallel application with marginal
effort. Thus, there is no need to learn language extensions or even a new programming
language at all.

� Safe development of parallel applications. Since the whole communication is encapsulated
inside our skeleton library, the programmer needs not know anything about MPI routines.
Thus, synchronization and space allocation problems, starvation, and deadlocks cannot
occur.

The remainder of this paper is structured as follows. In Section 2 the key concepts and
fundamental ideas of Muesli are described, such as polymorphic types, higher-order functions,
partial applications, and serialization. Section 3 presents the different distributed data structures
(distributed array, distributed matrix, and distributed sparse matrix) and the corresponding data
parallel skeletons provided by Muesli in detail. Section 4 introduces the atomic task parallel pro-
cesses and task parallel skeletons. Finally, Section 5 discusses selective implementaion details.
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Chapter 2

Concepts

The following sections describe key concepts and fundamental ideas underlying the implemen-
tation of our skeleton library. First of all, we recapitulate polymorphic types and their implemen-
tation in C++, since they are extensively used throughout our library (cf. Section 2.1). Next, two
concepts which emerged from the mathematical study of functions are presented, namely higher-
order functions and partial applications (cf. Sections 2.2 and 2.3). Both of them are essential
in order to understand the idea of algorithmic skeletons. Finally, we describe how our library
automatically serializes user-defined types (cf. Section 2.4)

2.1 Polymorphic Types

Type polymorphism is a programming language feature which allows to build generic programs,
i.e. programs that are independent of concrete types. This property is especially useful when
building container classes which store a certain number of elements of arbitrary type E. Since one
cannot anticipate the concrete type to be used with the data structure, without polymorphic types
one would have to provide different variants for each function. For sure, this approach is far from
being elegant. But even more disadvantageous is the fact, that the implementation will not work
with new types added later on. While this is hardly acceptable, type polymorphism allows one to
implement only a single generic variant of a function which will also work with future types.

C++ supports parametric polymorphism by means of so-called templates [42]. A template
definition consists of a list of type variables followed by the definition of a function, a class member
function, or a class. Here is an example for a function template to compute the maximum of two
values:

template<class E> E max(E a, E b) {
return (a < b) ? b : a;

}

The template parameter E is a placeholder for any built-in or user-defined type. The substitution
with concrete types is transparent to the user. max can be used as if it was an ordinary function.
For instance, the compiler automatically generates, i.e. instantiates, int max(int, int) when
calling max(5, 3). Different instances of max are distinguished by the overloading mechanism of
C++.

Our library uses polymorphic types within all distributed data structures. Here, the user can
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define the type of the elements to be stored by instantiating the appropriate type. All integral
numerical types of C++ as well as structs and unions, which are defined using these integral
numerical types, are supported. Letting the user choose the appropriate type is important due
to the following reasons: Firstly, this approach avoids unnecessary waste of memory. Allocating
space for a long double variable where short would suffice is hardly efficient. Secondly, using
a fixed type would force the user to make downcasts when using our data structure. Since this
is rather unaesthetic we decided to use type polymorphism in order to avoid inefficiencies and
provide maximum flexibility.

2.2 Higher-Order Functions

Higher-order functions are functions that take functions as arguments and/or return functions as
result. Although the term is not embraced in the C++ community, the Standard Template Library
(STL) contains lots of examples such as for_each and transform [43]. The template mechanism
and the chance to overload the parenthesis operator prove to be powerful toys to express higher-
order functions in C++. Here is a simple example for a higher-order function that takes a unary
function f and a value x of type E as arguments and applies f to x twice:

template<class E, class F>
E applyTwice(F f, E x) {
return f(f(x));

}

The template parameter F is a placeholder for arbitrary C++ types that support the function call
syntax such as ordinary function pointers and classes that provide a parenthesis operator:

class FunctionalClass {
inline int operator()(int x) const {

return x * x;
}

}

The overloaded function call operator permits objects of type FunctionalClass to be used as if
they were ordinary C++ functions. As the name suggests, such objects are often referred to as
functional objects or simply functors.

Our library makes heavy use of higher-order functions, since they are an essential require-
ment for algorithmic skeletons. Prior to explaining skeletons in detail, we will introduce another
important feature of our library which is closely coupled with higher-order functions, namely partial
applications.

2.3 Partial Applications

Passing less than n arguments to an n-ary function is called partial application. Semantically,
partially applying an n-ary function to k arguments with k < n means binding its first arguments
to some fixed values, thereby yielding a (n − k)-ary function. From a theoretical viewpoint, the
key concept to enable partial application is currying [33]. Currying has its roots in the math-
ematical study of functions where it has been shown that it is sufficient to restrict attention to
unary functions: Every function f : A1 × . . . × An → R can be turned into a unary function
g : A1 → . . . → An → R with → being associative to the right. g is called the curried form of
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f . Passing a single argument of type A1 to g results in a unary function to which we may pass
a value of type A2 to obtain another unary function to which we may pass a value of type A3 to
retrieve yet another unary function and so on until we obtain a unary function that takes a value
of type An which returns a value of type R. Of course, g(a1) . . . (an) leads to the same result as
f(a1, . . . , an). Although g is unary, we may think of it as being n-ary with the special property that
it is capable of taking its arguments one at a time: g(A1) . . . (Ak) with k < n yields a valid result,
namely a unary function. Semantically, this unary function is the curried form of an (n − k)-ary
function h that is defined as follows:

h : Ak+1 × . . .×An → R

Thus, we retrieve the curried form of f , whereas the first k arguments have been bound to
a1, . . . , ak:

h(ak+1, . . . , an) = f(a1, . . . , ak︸ ︷︷ ︸
constant

, ak+1, . . . , an)

Consider Listing 1 for a more concrete example. In order to use partial applications, we first
need to include the header file curry.h which defines the curry function (cf. line 1). The binary
function f to curry is defined in lines 3 - 5 and simply returns the sum of the given int arguments
a and b. The important part of this example is shown in lines 8–10. Here, the binary function f is
transformed into a partial application g by calling curry(f) (cf. line 8). Then, g is applied to the
argument 3 by calling g(3) (cf. line 9). This returns a function h whose definition is also given in
Listing 1. The difference between f and h is, that the first argument of f is preset to 3 such that h
consumes one argument less than f. In other words, f is only partially evaluated by presetting a

to 3 thus returning the partial application h. Finally, h is applied to the argument 4 (cf. line 9). By
doing so, x gets the value 7.

1 #include "curry.h" // partial application of f:
2 //
3 int f(int a, int b) { // int h(int b) {
4 return a + b; // return 3 + b;
5 } // }
6

7 void main(int argc, char** argv) {
8 Fct2<int, int, int, int (*)(int, int)> g = curry(f);
9 Fct1<int, int, int (*)(int)> h = g(3);

10 int x = h(4);
11 }

Listing 1: Partial applications and currying with Muesli.

Partial applications are implemented using the functional classes Fct0 . . . Fct6 defined in the
file curry.h. The number denotes how many parameters the functor expects. Again, consider the
binary function f. The function call curry(f)(3) curries the function and applies the argument 3
to it, thus returning a Fct1 object. These objects come into play when using a skeleton function
which expects a partial application as an argument. Let’s take, for example, the following skeleton
function implemented for the distributed array:

template<class R, class F> inline mapInPlace(const Fct1<E, R, F>& f)

The function sets each element ai of the distributed array to f(ai). In order to do so, the user must
pass the functional object f which is of type Fct1<E, R, F>&. The template parameter E denotes
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the type of the parameter of the function, R denotes its return type and F denotes the type of the
function, for example int (*)(int). Fortunately, one needs not pass F in most cases since the
compiler can derive it by means of the other template parameters.

2.4 Serialization

Object serialization is an important issue in the context of data storage and transmission due to
the fact that the objects to be interchanged among task or data parallel skeletons often are of
dynamic size or contain pointer structures. In this case, it is necessary to write the object data to
a contiguous memory block before sending them over the network, and to restore the object at
receivers’ side. In contrast to languages such as (Object) Pascal or Java, C++ does not inherently
support object serialization. To perform this type of operation, Muesli provides the abstract class
MSL Serializable.

class MSL_Serializable {
public:

MSL_Serializable() {}
virtual ˜MSL_Serializable() {}
virtual void reduce(void* pBuffer, int bufferSize) = 0;
virtual void expand(void* pBuffer, int bufferSize) = 0;
virtual int getSize() = 0;

};

Each class, whose instances represent objects which have to be transmitted serialized, must be
derived from MSL Serializable and implement the inherited methods reduce, expand, and
getSize. Objects which are not derived from MSL Serializable are supposed to be already
serialized, such as pointerless C++ structures or basic data types. In this case, there is no need
for an additional serialization (the object data is already stored in a continous memory block),
and the objects can be directly transmitted to the receiver. Further implementation details are
discussed in section 5.1 and 6.2.
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Chapter 3

Distributed Data Structures

3.1 Concepts

3.1.1 Skeletons

In Muesli, data parallelism is based on a distributed data structure. A distributed data structure
is split into several partitions, each of which is assigned to exclusively one process participating
in the data parallel computation. The data struture is manipulated by operations which process
it as a whole and are internally implemented in parallel. Nevertheless, these operations can
be interleaved with sequential computations working on non-distributed data. The programmer
views the computation as a sequence of parallel operations. Conceptually, this is almost as easy
as sequential programming. Communication problems such as deadlocks or starvation cannot
occur. Currently, three distributed data structures are offered by our library, namely:

template<class E> class DistributedArray { ... }
template<class E> class DistributedMatrix { ... }
template<class E, class S, class D> class DistributedSparseMatrix { ... }

The template parameter E denotes the type of the elements of the distributed data structure,
the parameters S and D are explained in Section 3.4. By instantiating the parameter E, arbitrary
element types can be generated as pointed out in Section 2.1. Note that a (sparse) matrix is
not the same as an array of arrays, since it allows an arbitrary partitioning into submatrices while
the latter would only allow to build blocks of sequences of rows or columns, each consisting of
a full array. Moreover, there are additional operations for (sparse) matrices such as horizontal or
vertical rotations which only make sense for a matrix.

The main objective when designing our distributed data structures was to support data par-
allel skeletons such as fold, map, zip, and their variants. Skeletons can best be described as
abstract computational patterns which relieve the programmer of a parallel application from low-
level problems such as synchronizing processes or preventing deadlocks. Each skeleton expects
a function pointer or a partial application f as an argument which concretizes its abstract be-
haviour. The skeletons are defined as follows:

� fold reduces all elements of the distributed data structure by repeatedly applying f to them.
f needs to be associative and bijective.

� map replaces each element of the distributed data structure by the result of applying f to it.
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� scan replaces each element of the distributed data structure by the result of folding all pre-
vious elements with f.

� zip combines two structurally identical data structures by merging corresponding elements
with f.

f can either be a partial application or an ordinary C++ function pointer. In the latter case, the func-
tion pointer must comply with the following syntax: 〈return type〉 (*〈function name〉) (〈list of pa-
rameter types〉). The syntax may seem a little odd but is easily explained. Let’s consider, for
example, the signature of the skeleton mapInPlace defined in the class DistributedArray<E>:

void mapInPlace(E (*f)(E))

Let A be a distributed array and f be a function of type E (*)(E). A.mapIndexInPlace(f) applies
f to each element ai of the distributed array and replaces ai by f(ai). In other words, the map
skeleton iterates over each element of the distributed array and applies the given function f to it.
f in turn expects one argument of type E which represents the element f is applied to. Obviously,
f must return a value which again is of type E. Note that the signature of f must exactly match
the one defined in the signature of mapInPlace. Otherwise, the code cannot be compiled.

At first, some skeletons such as fold or scan might seem equivalent to the corresponding
MPI collective operation MPI_Reduce or MPI_Scan. However, they are more powerful due to the
fact that the argument functions of all skeletons can be partial applications rather than just ordi-
nary functions. The ability to pass user-defined functions in order to manipulate the whole data
structure in parallel is the main distinctive feature of our implementation. This concept is very
powerful, since the user is not bound to predefined functions but rather can define her own. For
each skeleton, there is a variant which expects a partial application as parameter. Due to the
C++ overloading mechanism, we could give it the same name and the same “remaining signa-
ture”. Thus, the user does not have to bother whether or not the skeleton is used with a function
or a partial application as argument. If a skeleton has more than one argument function, any
combination of functions and partial applications as arguments is possible.

As already mentioned, all skeletons are offered in different variants regarding the signature
of the argument function. The type of the necessary function can be deduced from the suffix of
the skeleton function. The full list of data parallel skeleton functions including all variants of fold,
map, scan, and zip are presented in Sections 3.2–3.4.

Index denotes, that the argument function of the skeleton must provide additional parameter(s)
for the global index(es) of the current element. In case of the distributed array, one parameter
for the global index is sufficient. In case of the distributed (sparse) matrix, two parameters
must be provided, namely one for the global row and one for the global column index. Thus,
the argument function may incorporate the index(es) in its calculations but is of course not
obliged to do so. Since these skeletons return a new distributed data structure as opposed
to overwriting elements, all of them are annotated with the const modifier. The following
example creates a distributed array A with 10 elements and initializes each of them with
1 (cf. Section 3.2). Then, a second distributed array B is created whose elements are
initialized with the result of applying f to the corresponding elements of A:

double f(double value, int rowIndex, int columnIndex) {
return 2 * value + rowIndex - columnIndex;

}

void main(int argc, char** argv) {
DistributedArray<double> A(10, 1);
DistributedArray<double> B = A.mapIndex(&f);

}
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InPlace denotes, that the value of each element is overwritten with the result of applying the
skeleton argument function f to each element as opposed to creating a new distributed
data structure and returning a reference to it. Since these skeletons overwrite elements as
opposed to creating a new distributed data structure, all of them return void. The following
example creates a distributed matrix A of size 4× 4 and initializes each element with 0. The
distributed matrix is divided into partitions of size 2 × 2. Then, each element is replaced by
applying f to it:

double f(double value) {
return 2 * value;

}

void main(int argc, char** argv) {
DistributedMatrix<double> A(4, 4, 0, 2, 2);
A.mapInPlace(&f);

}

IndexInPlace denotes, that the skeleton has both of the above explained properties: It must
provide additional parameter(s) for the global index(es) of the current element and overwrites
each element with the result of applying the given function f to the element. Since these
skeletons overwrite elements, all of them return void. The following example creates a
distributed sparse matrix A of size 4 × 4 and partitions it into submatrices of size 2 × 2 (cf.
Section 3.4). Then, each element is replaced by applying f to it:

double f(double value, int rowIndex, int columnIndex) {
return value * (rowIndex + columnIndex);

}

void main(int argc, char** argv) {
DistributedSparseMatrix<double> A(4, 4, 2, 2);
A.mapIndexInPlace(&f);

}

All data parallel skeletons are provided in terms of member functions of a distributed data
structure. Since each skeleton conceptually answers a different purpose, we classify them into
communication skeletons, computation skeletons, and combined skeletons:

� Communication skeletons perform typical parallel communication patterns such as broad-
casting an element to all partitions or collection all elements from each partition. Communi-
cation skeletons do not perform any computation tasks.

� Computation skeletons perform typical parallel computation patterns such as applying a
given function to each element or combining two data structures. Computation skeletons do
not perform any communication tasks.

� Combinded skeletons perform both parallel computation as well as parallel communication
patterns such as folding all elements.

3.1.2 Local vs. Global View

When distributing a data structure among a certain number of processes, each process only
stores a part of the whole data structure. This part locally available to a single process is often
referred to as partition. The global data structure only exists in the programmer’s mind. However,
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the programmer wants to access the distributed data structure in whole and is not interested in
the local view of each process. To overcome this problem, it is reasonable to distinguish between
a global and a local view:

Global From a programmer’s perspective, this is the default view when working with our data
structures. In general, the programmer is not interested in how the data structure is de-
composed into partitions and which partition is assigned to which process. All these details
are intended to be completely transparent to the user of our library, such that one can write
parallel programs in a sequential way.

Local As already mentioned, the whole data structure is decomposed into several partitions and
exclusively assigned to one process. By doing so, each partition can only access its locally
stored elements. To prevent unnecessary index calculations, these elements are always
accessed with their local index. However, each partition is able to compute the global index
of each element, since each partition stores its starting index with respect to the whole data
structure.

Figure 3.1 illustrates the difference between a local and a global view point by means of the
4× 4 distributed sparse matrix A (cf. Figure 3.1a). The matrix is decomposed into four partitions
of size 2×2 and distributed among four processes. Thus, each process pi is exclusively assigned
one partition (cf. Figure 3.1b). From a global perspective, accessing the element a0,0 will yield
1 for each process. However, from a local perspective, accessing the element a0,0 will yield a
different result for each process, since each process returns the element in the upper left corner
of its local partition. Thus, p1 will return 1, p2 will return 0, p3 will return 6, and p4 will return 3.
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Figure 3.1: (a) Global view of the sparse matrix A. (b) Local view of the sparse matrix A after
distributing the partitions among np = 4 processes. pi denotes process i.

By default, all indexes used by skeletons and auxiliary functions are expected to be global
ones. If this is not the case, the corresponding function has the suffix Local as part of its name.
There are also functions which expect a global index for the first and a local index for the second
argument, and vice versa. In this case, the function has the suffix GlobalLocal and LocalGlobal,
respectively.

3.1.3 Multi-Core Processing

All of our distributed data structures not only work on multi-processor architectures with a dis-
tributed memory, but efficiently make use of current multi-core processors using a shared mem-
ory architecture. This feature has been implemented using OpenMP, which is an abbreviation
for Open Multi-Processing [44, 45]. As the name suggests, OpenMP is an API which has been
developed to support the development of parallel applications for shared memory architectures.
Essentially, the API consists of a couple of compiler directives and library routines which makes it
very easy to use. The main advantages of OpenMP are as follows:
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Simplicity There is no need for dealing with message passing and all its common errors such
as starvation or deadlocks as with MPI. Instead, OpenMP creates a team of threads and
distributes the work among them. After the parallel region has been executed, all threads
are destroyed.

Incremental parallelization In general, one can speed up existing programs by simply inserting
OpenMP directives without needing to reorganize the code dramatically. Thus, one can
parallelize a program in a step-by-step manner with little risk to introduce new bugs.

Portability Due to the fact that many of the major IT companies were involved during the spec-
ification of OpenMP, the API is supported by virtually all C++ compilers1. If the compiler
for whatever reasons does not support OpenMP it will nevertheless compile the code and
simply ignore the OpenMP directives by treating them as comments.

Section 5.5 shows how OpenMP directives can speed up the execution of certain functions
using the example of the mapInPlace skeleton. Furthermore, Section 3.4.5 presents some exper-
imental benchmarks which show the scalability behaviour of all OpenMP enhanced skeletons of
the distributed sparse matrix.

3.2 Distributed Array

The class DistributedArray<E> can be used to distribute an array of length size among np

processes. The following constraints apply:

� The number np of used processes must divide the size of the distributed array without re-
mainder, i.e. size mod np = 0.

� The number np of used processes must be a power of 2. Otherwise, the following functions
and all its variants cannot be used: broadcast, fold, gather, permute, rotate, and show.

3.2.1 Constructors

The following constructors can be used to create a new distributed array. None of them requires
any communication, since initially, all processes have access to the whole data structure. Each
process then autonomously decides which part of the data structure has to be copied and stored
locally. Constructors annotated with ? are enhanced by OpenMP directives (cf. Section 3.1.3).

DistributedArray(int size)

Creates a distributed array with size elements where size > 1.

DistributedArray(int size, E initial) ?

Creates a distributed array with size elements where size > 1. Each element is initialized
with the given value initial.

1In order to make use of the OpenMP parallelization, one needs to enable this compiler feature. This is usually done
by providing the option -openmp.
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DistributedArray(int size, const E* b) ?

Creates a distributed array with size elements where size > 1. Each element is initialized
with the corresponding element of the given array b. Obviously, the length of b must match
the given argument size. Let lb be the length of b. If lb ≥ size the last lb − size elements
of b are ignored. If lb < size, the programm will exit.

DistributedArray(int size, E (*f)(int)) ?

Creates a distributed array with size elements where size > 1. Each element ai is initial-
ized with f(i). Note that f can take the global index of the current element into account.

template<class F> DistributedArray(int size, const Fct1<int, E, F>& f) ?

Variant for partial applications (see above).

DistributedArray(const DistributedArray<E>& B) ?

Copy constructor. Creates a new distributed array by means of the given distributed array B.

3.2.2 Skeletons

The following sections provide a complete list of all skeletons currently implemented for the dis-
tributed array. Skeletons annotated with ? are enhanced by OpenMP directives (cf. Section 3.1.3).

3.2.2.1 Computation Skeletons

inline template<class R> DistributedArray<R> map(R (*f)(E)) const ?

Creates a new distributed array b with the same size as the original distributed array a and
initializes each element bi with f(ai). Note that b may store a different type R than a does.

inline template<class R, class F> DistributedArray<R> map( ?
const Fct1<E, R, F>& f) const

Variant for partial applications (see above).

inline template<class R> ?
DistributedArray<R> mapIndex(R (*f)(int, E)) const

Creates a new distributed array b with the same size as the original distributed array a and
initializes each element bi with f(i, ai). Note that b may store a different type R than a does
and that f may take the global index of the current element into account.
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inline template<class R, class F> DistributedArray<R> mapIndex( ?
const Fct2<int, E, R, F>& f) const

Variant for partial applications (see above).

inline void mapIndexInPlace(E (*f)(int, E)) ?

Sets each element ai of the distributed array to f(i, ai).

inline template<class F> ?
void mapIndexInPlace(const Fct2<int, E, E, F>& f)

Variant for partial applications (see above).

inline void mapInPlace(E (*f)(E)) ?

Sets each element ai of the distributed array to f(ai).

inline template<class F> void mapInPlace(const Fct1<E, E, F>& f) ?

Variant for partial applications (see above).

inline void mapPartitionInPlace(void (*f)(E*))

Replaces the whole partition, i.e. all locally stored elements, by applying the given function
f to them.

inline template<class F>

void mapPartitionInPlace(const Fct1<E*, void, F>& f)

Variant for partial applications (see above).

inline template<class E2, class R> DistributedArray<R> ?
zipWith(const DistributedArray<E2>& b, R (*f)(E, E2)) const

Creates a new distributed array c with the same size as the original distributed array a where
each element is set to f(ai, bi). Thus, the given distributed array b must also be of length
size. If b is smaller, the program will exit. If b is larger, surplus elements will be ignored.

inline template<class E2, class R, class F> DistributedArray<R> ?
zipWith(const DistributedArray<E2>& b, const Fct2<E, E2, R, F> f) const

Variant for partial applications (see above).
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inline template<class E2, class R> void zipWithIndex( ?
const DistributedArray<E2>& b, R (*f)(int, E, E2)) const

Creates a new distributed array c with the same size as the original distributed array a where
each element ci is set to f(i, ai, bi). Thus, the given distributed array b must also be of length
size. If b is smaller, the program will exit. If b is larger, surplus elements will be ignored.

inline template<class E2, class R, class F> DistributedArray<R> ?
zipWithIndex(const DistributedArray<E2>& b,

const Fct3<int, E, E2, R, F>& f) const

Variant for partial applications (see above).

inline template<class E2> void zipWithIndexInPlace( ?
const DistributedArray<E2>& b, E (*f)(int, E, E2))

Sets each element ai of the distributed array to f(i, ai, bi). Thus, the given distributed array
b must also be of length size. If b is smaller, the program will exit. If b is larger, surplus
elements will be ignored.

inline template<class E2, class F> void zipWithIndexInPlace( ?
const DistributedArray<E2>& b, const Fct3<int, E, E2, E, F>& f) const

Variant for partial applications (see above).

inline template<class E2> void zipWithInPlace( ?
const DistributedArray<E2>& b, E (*f)(E, E2))

Sets each element ai of the distributed array to f(ai, bi). Thus, the given distributed array
b must also be of length size. If b is smaller, the program will exit. If b is larger, surplus
elements will be ignored.

inline template<class E2, class F> void zipWithInPlace( ?
const DistributedArray<E2>& b, const Fct2<E, E2, E, F> f)

Variant for partial applications (see above).

3.2.2.2 Communication Skeletons

void allToAll(const DistributedArray<int*>& indexes, E dummy)

Each collaborating processor sends a block of elements to every other processor. The
beginnings of all blocks are specified by the given distributed array indexes. Thus, indexes
must be of length size/np. If indexes is smaller, the program will exit. If indexes is larger,
surplus elements are simply ignored. The received blocks are concatenated without gaps in
arbitrary order. If a processor receives less elements than its local partition can accomodate,
the remaining elements are filled with the given argument dummy. The programm will exit, if
a processor receives more elements than it can accomodate.
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void broadcast(int index)

Sends the element at the given global index to all processors where 0 ≤ index < size.
Afterwards, each element of the distributed array stores the same value. If index < 0 or
index ≥ size, an IllegalPartitionException will be thrown.

void broadcastPartition(int blockIndex)

Broadcasts the block with the given index to all processors. Afterwards, each block of the
distributed array stores the same values. Note that 0 ≤ blockIndex < size/np must hold.
Otherwise, an IllegalPartitionException will be thrown.

void gather(E* b) const

Transforms a distributed array to an ordinary array by copying each element to the given
array b. Obviously, b must at least be of length size. If b is smaller, the program will exit. If
b is larger, surplus elements are left unchanged.

inline void permute(int (*f)(int))

Permutes the elements of the distributed array according to the given function f. For this
reason, f must be bijective and return the new global index for each element ai with 0 ≤ i <
size.

inline template<class F> void permute(const Fct1<int, int, F>& f)

Variant for partial applications (see above).

inline void permutePartition(int (*f)(int))

Permutes whole partitions of the distributed array according to the given function f. For this
reason, f must be bijective and return the ID of the new process pi to store the partition with
0 ≤ i < np.

inline template<class F> void permutePartition(const Fct1<int, int, F>& f)

Variant for partial applications (see above).

3.2.2.3 Combined Skeletons

None of the following map skeleton variants increases the expressiveness of our skeleton library,
but are merely provide as an optimization in case one uses the map skeleton and directly after-
wards another skeleton, e.g. fold or scan [46].
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inline void fold(E (*f)(E, E)) const ?

Reduces all elements of the distributed array to a single one by successively applying the
given binary function f to them. f must be associative and commutative.

inline template<class F> E fold(const Fct2<E, E, E, F>& f) const ?

Variant for partial applications (see above).

inline E mapIndexInPlaceFold(E (*g)(int, E), E (*f)(E, E)) const ?

Reduces all elements of the distributed array to a single one by successively applying the
given binary function f to them. Prior to folding each new element ai, the given function g is
applied to it. The effects of applying g to each element are not persistent, i.e. the elements
of a will not be altered. f must be associative and commutative in order to return a correct
result.

inline template<class F1, class F2> E mapIndexInPlaceFold( ?
const Fct2<int, E, E, F1>& g, const Fct2<E, E, E, F2>& f) const

Variant for partial applications (see above).

inline template<class F1, class F2> E mapIndexInPlaceFold( ?
E (*g)(int, E), const Fct2<E, E, E, F2>& f) const

Variant for mixed arguments where g is an ordinary function pointer and f a partial applica-
tion (see above).

inline template<class F1, class F2> E mapIndexInPlaceFold( ?
const Fct2<int, E, E, F1>& g, E (*f)(E, E)

Variant for mixed arguments where g is a partial application and f an ordinary function
pointer (see above).

inline void mapIndexInPlacePermutePartition(E (*f)(int, E), int (*g)(int))

Sets each element ai of the distributed array to f(i, ai) and permutes the locally stored
elements by help of the given function g. For each of the np processes, g is used to calculate
the ID of the new process which will store the elements. For this reason, g must be bijective.
Otherwise, an IllegalPermuteException is thrown.

inline template<class F> void mapIndexInPlacePermutePartition(

const Fct2<int, E, E, F1>& f, const Fct1<int, int, F2>& g) const

Variant for partial applications (see above).
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inline void mapIndexInPlaceScan(E (*g)(int, E), E (*f)(E, E)) const

Sets each element ai of the distributed array to f(i, ai) and subsequently replaces each
element ai by the result of reducing the elements a0 . . . ai by successively applying the
given binary function g to them.

inline template<class F> void mapIndexInPlaceScan(

const Fct2<int, E, E, F>& g, const Fct2<E, E, E, F>& f) const

Variant for partial applications (see above).

inline void scan(E (*f)(E, E)) const

Replaces each element ai of the distributed array by the result of folding a0 . . . ai using the
given function f. f must be associative and commutative.

inline template<class F> void scan(const Fct2<E, E, E, F>& f) const

Variant for partial applications (see above).

3.2.3 Auxiliary Functions

The following auxiliary functions can be used to access and modify properties of the local par-
tition of a distributed array. They are no skeletons, but they are typically used in user-defined
skeleton argument functions. Functions annotated with ? are enhanced by OpenMP directives (cf.
Section 3.1.3).

DistributedArray<E> copy() const ?

Copies the distributed array by using a copy constructor and returns a reference to the new
distributed array.

DistributedArray<E> copyWithGap(int size, E dummy) const ?

Copies the distributed array by copying each partition to a partition of the new distributed
array. The new distributed array is of length size where size > 1. If the new distributed
array is smaller than the original distributed array, surplus elements will get lost. If it is larger,
missing elements are filled with the given argument dummy.

E get(int index) const

Returns the value of the element at the given global index where 0 ≤ index < size.
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int getFirst() const

Returns the global index of the first element of the local partition.

E getLocal(int index) const

Returns the value of the element at the given local index of the local partition. Note that
0 ≤ index < getLocalSize() must hold. Otherwise, the program will exit.

int getLocalSize() const

Returns the number of elements of the local partition of the distributed array.

int getSize() const

Returns the total number of elements of the distributed array.

bool isLocal(int index) const

True, if the given global index corresponds to an element in the local partition of the dis-
tributed array. False otherwise.

void set(int index, E value)

Sets the element at the given global index of the distributed array to the given value where
0 ≤ index < size.

void setLocal(int index, E value)

Sets the element at the given local index of the local partition to the given value where
0 ≤ index < getLocalSize().

void show() const

Prints the values of the distributed array to standard output. Alternatively, one can use the
operator <<.

3.3 Distributed Matrix

The class DistributedMatrix<E> can be used to distribute a matrix of size n × m among np

processes. For this purpose the matrix is decomposed into several blocks. The size of each
block is derived from the given parameters n, m, rows and cols such that each block is of size
(n / rows) × (m / cols). The following constraints apply:
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� rows · cols = np, i.e. the number of blocks must be equal to the number of processors
used. Otherwise, the program will exit when accessing certain elements of the distributed
matrix.

� The number of processors used must be a power of 2. Otherwise, the following functions
and all its variants cannot be used: allToAll, broadcast, fold, gather, permute, rotate,
scan, and show.

� Both n mod rows = 0 and m mod cols = 0 must hold.

Internally, blocks are identified using both a unique ID or the coordinates within the group of
collaborating processes. The ID is assigned row-wise from left to right and starts with 0. A similar
scheme is used by the distributed sparse matrix (cf. Section 3.4.1.1).

3.3.1 Constructors

The following constructors can be used to create a new distributed matrix. None of them requires
any communication, since initially, all processes have access to the whole data structure. Each
process then autonomously decides which part of the data structure has to be copied and stored
locally. Constructors annotated with ? are enhanced by OpenMP directives (cf. Section 3.1.3).

DistributedMatrix(int n, int m, int rows, int cols)

Creates a new distributed matrix of size n × m, all elements are left uninitialized. The pa-
rameters rows and cols determine into how many rows and columns the matrix is split up.
Note that n ≥ 1, m ≥ 1, 1 ≤ rows ≤ n and 1 ≤ cols ≤ m must hold.

DistributedMatrix(int n, int m, E initial, int rows, int cols) ?

Creates a new distributed matrix of size n × m and initializes each element with the given
parameter initial. The parameters rows and cols determine into how many rows and
columns the matrix is split up. Note that n ≥ 1, m ≥ 1, 1 ≤ rows ≤ n and 1 ≤ cols ≤ m must
hold.

DistributedMatrix(int n, int m, const E** a, int rows, int cols) ?

Creates a new distributed matrix of size n × m, each element is initialized with the corre-
sponding element of the given matrix a. Obviously, a must at least be of size n × m. If a
is smaller, the program will exit. If a is larger, surplus elements are simply ignored. The
parameters rows and cols determine into how many rows and columns the matrix is split
up. Note that n ≥ 1, m ≥ 1, 1 ≤ rows ≤ n and 1 ≤ cols ≤ m must hold.

DistributedMatrix(int n, int m, E (*f)(int, int), int rows, int cols) ?

Creates a new distributed matrix of size n × m, each element ai,j is initialized by evaluating
the given function f(i, j). The parameters rows and cols determine into how many rows
and columns the matrix is split up. Note that n ≥ 1, m ≥ 1, 1 ≤ rows ≤ n and 1 ≤ cols ≤ m

must hold.
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template<class F> DistributedMatrix(int n, int m, ?
Fct2<int, int, E, F>& f, int rows, int cols)

Variant for partial applications (see above).

DistributedMatrix(const DistributedMatrix<E>& B) ?

Copy constructor. Creates a new distributed matrix by means of the given distributed matrix
B.

3.3.2 Skeletons

The following sections provide a complete list of all skeletons currently implemented for the
distributed matrix. Skeletons annotated with ? are enhanced by OpenMP directives (cf. Sec-
tion 3.1.3).

3.3.2.1 Computation Skeletons

template<class R> inline DistributedMatrix<R> map(R (*f)(E)) const ?

Creates a new distributed matrix b with the same size as the original distributed matrix a and
initializes each element bi,j with f(ai,j). Note that b may store a different type R than a does.

template<class R, class F> inline DistributedMatrix<R> map( ?
const Fct1<E, R, F>& f) const

Variant for partial applications (see above).

template<class R> inline DistributedMatrix<R> mapIndex( ?
R (*f)(int, int, E)) const

Creates a new distributed matrix b with the same size as the original distributed matrix a and
initializes each element bi,j with f(i, j, ai,j). Note that b may store a different type R than a
does and that f may take the global index of the current element into account.

template<class R, class F> inline DistributedMatrix<R> mapIndex( ?
const Fct3<int, int, E, R, F>& f) const

Variant for partial applications (see above).

inline void mapIndexInPlace(E (*f)(int, int, E)) ?

Sets each element ai,j of the distributed matrix to f(i, j, ai,j). Note that f may take the global
index of the current element into account.
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template<class F> inline void ?
mapIndexInPlace(const Fct3<int, int, E, E, F>& f)

Variant for partial applications (see above).

inline void mapInPlace(E (*f)(E)) ?

Sets each element ai,j of the distributed matrix to f(ai,j).

template<class F> inline void mapInPlace<const Fct1<E, E, F>& f ?

Variant for partial applications (see above).

inline void mapPartitionInPlace(void (*f)(E**))

Replaces all locally stored elements by applying the given function f to them.

template<class F> inline void
mapPartitionInPlace(const Fct1<E**, void, F>& f)

Variant for partial applications (see above).

template<class E2, class R> inline DistributedMatrix<R> ?
zipWith(const DistributedMatrix<E2>& b, R (*f)(E, E2)) const

Creates a new distributed matrix c with the same size as the original distributed matrix a
where each element is set to f(ai,j , bi,j). Thus, the given distributed array b must be of the
same size and distribution as a.

template<class E2, class R, class F> inline DistributedMatrix<R> ?
zipWith(const DistributedMatrix<E2>& b, const Fct2<E, E2, R, F>& f) const

Variant for partial applications (see above).

template<class E2, class R> inline DistributedMatrix<R> zipWithIndex( ?
const DistributedMatrix<E2>& b, R (*f)(int, int, E, E2)) const

Creates a new distributed matrix c with the same size as the original distributed matrix a
where each element is set to f(i, j, ai,j , bi,j). Thus, the given distributed array b must be of
the same size and distribution as a.

template<class E2, class R, class F> inline DistributedMatrix<R> ?
zipWithIndex(const DistributedMatrix<E2>& b,

const Fct4<int, int, E, E2, R, F>& f) const

Variant for partial applications (see above).
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template<class E2> inline void zipWithIndexInPlace( ?
const DistributedMatrix<E2>& b, E (*f)(int, int, E, E2))

Sets each element ai,j of the distributed matrix fo f(i, j, ai,j , bi,j). Thus, the given distributed
array b must be of the same size and distribution as a.

template<class E2, class F> inline void zipWithIndexInPlace( ?
const DistributedMatrix<E2>& b, const Fct4<int, int, E, E2, E, F>& f)

Variant for partial applications (see above).

template<class E2> inline void zipWithInPlace( ?
const DistributedMatrix<E2>& b, E (*f)(E, E2))

Sets each element ai,j of the distributed matrix fo f(ai,j , bi,j). Thus, the given distributed
array b must be of the same size and distribution as a.

template<class E2, class R, class F> inline DistributedMatrix<R> ?
zipWithInPlace(const DistributedMatrix<E2>& b,

const Fct4<int, int, E, E2, R, F>& f) const

Variant for partial applications (see above).

3.3.2.2 Communication Skeletons

void broadcast(int rowIndex, int colIndex)

Replaces each element of the distributed matrix with the element with the given global in-
dexes. Therefore, 0 ≤ rowIndex < n and 0 ≤ colIndex < m must hold. Otherwise, an
IllegalPartitionException is thrown.

void broadcastPartition(int blockIndexRow, int blockIndexCol)

Replaces each block of the distributed matrix with the block with the given indexes. Note that
0 ≤ blockIndexRow < n/rows and 0 ≤ blockIndexCol < m/cols must hold. Otherwise, an
IllegalPartitionException is thrown.

void gather(E** b) const

Transforms a distributed matrix to an ordinary matrix by copying each element ai,j to the
given matrix b. Obviously, b must at least be of size n × m. If b is smaller, the program will
exit. If b is larger, surplus elements are left unchanged.
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inline void permutePartition(int (*f)(int, int), int (*g)(int, int))

Permutes the blocks of a distributed matrix according to the given functions f and g. Both
functions will be passed the indexes of the locally available block and must return the new
block index. While f must return the new row block index, g must do the same for the new
column block index. Note that f must return a value between 0 and getBlocksInRow() and
that g must return a value between 0 and getBlocksInCol(). In other words, f and g in
combination must create a bijective relation. Otherwise, an IllegalPermuteException is
thrown.

template<class F> inline void permutePartition(

const Fct2<int, int, int, F>& f, int (*g)(int, int))

Variant with f being a partial application (see above).

template<class F> inline void permutePartition(

int (*f)(int, int), const Fct2<int, int, int, F>& g)

Variant with g being a partial application (see above).

template<class F1, class F2> inline void permutePartition(

const Fct2<int, int, int, F1>& newRow, const Fct2<int, int, int, F2>& newCol)

Variant for both f and g being partial applications (see above).

inline void rotateCols(int (*f)(int colIndex)

Rotates the partitions of a distributed matrix cyclically in vertical direction. The number of
steps depends on the given function f which calculates this number for each column. Nega-
tive numbers correspond to cyclic rotations upwards, whereas positive numbers correspond
to cyclic rotations downward.

template<class F> inline void rotateCols(const Fct1<int, int, F>& f)

Variant for partial applications (see above).

inline void rotateCols(int steps)

Rotates the partitions of a distributed matrix cyclically in vertical direction. The number
of steps depends on the given parameter steps. Negative numbers correspond to cyclic
rotations upwards, whereas positive numbers correspond to cyclic rotations downward.

inline void rotateRows(int (*f)(int rowIndex))

Rotates the partitions of a distributed matrix cyclically in horizontal direction. The number of
steps depends on the given function f which calculates this number for each row. Negative
numbers correspond to cyclic rotations to the left, whereas positive numbers correspond to
cyclic rotations to the right.
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template<class F> inline void rotateRows(const Fct1<int, int, F>& f)

Variant for partial applications (see above).

inline void rotateRows(int steps)

Rotates the partitions of a distributed matrix cyclically in horizontal direction. The number
of steps depends on the given parameter steps. Negative numbers correspond to cyclic
rotations to the left, whereas positive numbers correspond to cyclic rotations to the right.

3.3.2.3 Combined Skeletons

inline E fold(E (*f)(E, E)) const ?

Reduces all elements of the distributed matrix to a single one by successively applying the
given binary function f to them. f must be associative and commutative.

template<class F> E fold(const Fct2<E, E, E, F>& f) const ?

Variant for partial applications (see above).

3.3.3 Auxiliary Functions

The following auxiliary functions can be used to access and modify properties of the local par-
tition of a distributed array. They are no skeletons, but they are typically used in user-defined
skeleton argument functions. Functions annotated with ? are enhanced by OpenMP directives (cf.
Section 3.1.3).

inline E get(int rowIndex, int colIndex)

Returns the element with the given global indexes.

inline int getBlocksInCol() const

Returns the number of blocks per column of the distributed matrix, i.e. cols.

inline int getBlocksInRow() const

Returns the number of blocks per row of the distributed matrix, i.e. rows.
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inline int getCols() const

Returns the number of columns of the distributed matrix, i.e. m.

inline int getFirstCol() const

Returns the global column index of the first column of the locally stored block.

inline int getFirstRow() const

Returns the global row index of the first row of the locally stored block.

inline E getGlobalLocal(int rowIndex, int colIndex)

Returns the element with the given indexes. Note that rowIndex is interpreted as a global
index whereas colIndex is interpreted as a local index. Thus, 0 ≤ rowIndex < n and
0 ≤ colIndex < getLocalCols() must hold. A NonLocalAccessException is thrown oth-
erwise.

inline E getLocal(int rowIndex, int colIndex)

Returns the element with the given indexes. rowIndex and columnIndex are interpreted as
local indexes. Thus, 0 ≤ rowIndex< getLocalRows() and 0 ≤ colIndex< getLocalCols()

must hold. A NonLocalAccessException is thrown otherwise.

inline int getLocalCols() const

Returns the number of columns of the locally stored block, i.e. n / rows.

inline E getLocalGlobal(int rowIndex, int colIndex)

Returns the element with the given index. rowIndex is a local index and that colIndex is
a global index. Thus, 0 ≤ rowIndex < getLocalRows() and 0 ≤ colIndex < m must hold.
Otherwise a NonLocalAccessException is thrown.

inline int getLocalRows() const

Returns the number of rows of the locally stored block.

inline int getRows() const

Returns the number of rows of the distributed matrix, i.e. n.
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inline bool isLocal(int rowIndex, int colIndex) const

True, if the element with the given global indexes is stored locally. False otherwise.

inline int setLocal(int rowIndex, int colIndex, E value)

Sets the element with the given indexes to the given value. Note that rowIndex and
colIndex are interpreted as local indexes. Thus, 0 ≤ rowIndex < getLocalRows() and
0 ≤ colIndex < getLocalCols() must hold.

inline void show() const

Prints the values of the distributed matrix to standard output. Each line is surrounded by
parantheses, elements are separated by blanks. Alternatively, one can use the operator <<.

3.4 Distributed Sparse Matrix

Sparse matrices play an important role in numerical analysis: The discretization of partial dif-
ferential equations with the finite element method or the description of graphs by means of an
adjacency matrix often results in a matrix primarily populated with zeros. Especially for very large
matrices it is beneficial to use special data structures that take advantage of its sparse structure.
Thus, operations can be performed faster while simultaneously consuming less memory com-
pared to standard data structures. Our data structure for general sparse matrixes provides the
following core features:

� Support for various data parallel skeletons such as map, fold, and zip in terms of member
functions in order to manipulate the data structure in parallel.

� Support for arbitrary compression schemes. The user can define how the sparse matrix is
compressed. In fact, the user has the option to extend our predefined compression schemes
and use her own.

� Support for arbitrary distribution schemes. The user can define how the sparse matrix is
distributed across the processors. This load balancing mechanism is highly flexible, since
again our predefined schemes can be extended.

� Besides supporting multi-processor architectures with a distributed memory, our data struc-
ture also makes use of multi-core processors with a shared memory architecture such that
some skeletons and auxiliary functions can be executed even faster.

At first glance, our data structure for distributed sparse matrices competes with approved and
established software libraries for numerical computations such as LINPACK [47] and its successor
LAPACK [48]. These libraries offer many powerful routines for solving arbitrary systems of linear
equations, least-square and eigenvalue problems. While the former has been designed to run on
supercomputers in the 1970s, the latter has been developed to run on modern shared memory
computer architectures. More recently, the ScaLAPACK [49] project has redesigned numerous
LAPACK routines to facilitate numerical computations even on distributed memory systems. Ob-
viously, our data structure cannot compete with the aforementioned libraries and does, in fact,
not intend to do so. Our library is not designed to solve linear systems of equations but focuses
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on the support of data parallel algorithmic skeletons for sparse matrices. Although LAPACK as
well as ScaLAPACK can handle band matrices, none of them supports general sparse matrices
or user-defined functions, i.e. skeletons, at all. The SPARSKIT [50] tool package, which has
been explicitly designed to work with general sparse matrices, can indeed convert between a vast
number of different storage schemes but also lacks the support for skeletons.

3.4.1 Concepts

When designing our distributed data structure for general sparse matrices we aimed at providing
a highly flexible construct which is straightforward to use and easy to extend. The following sub-
sections describe the key concepts used to implement this flexibility. Some, but definitely not all
implementation details are covered in Chapter 5.

3.4.1.1 Submatrices

One of our main objectives was to implement a data structure for general sparse matrices which
supports arbitrary compression schemes, not merely a single one. This is important in conjunction
with the fact that all compression schemes must perform a tradeoff between the access time for
a single element and the space needed for storing the compressed matrix. For this reason,
the global sparse matrix of size n × m is split up into multiple submatrices of size r × c with
n, m, r, c ∈ N. Usually, r � n and c � m. Both parameters must be defined by the user. This
concept is similar to the one used in the Block Sparse Row compression scheme [50]. However,
our implementation uses this approach only to divide the global matrix into multiple submatrices,
not to compress them. The actual compression is handled by the submatrices, i.e. each submatrix
is responsible for compressing locally available elements. How this compression takes place can
be defined by the user (cf. Section 3.4.1.2).
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Figure 3.2: Splitting up a 5× 5 sparse matrix into multiple submatrices using (a) r = 1 and c = 5
and (b) r = c = 2. The encircled number in the upper left corner of a submatrix shows its ID.

Our approach offers a lot of flexibility regarding the partitioning of the sparse matrix. For
example, if r = 1 and c = m, the matrix is split into n submatrices such that each submatrix stores
a single row (cf. Figure 3.2a). A column-wise partitioning would be achieved by setting r = n and
c = 1. This flexibility comes in handy when the user often needs to rotate rows or columns, as all
required elements are stored locally in a single submatrix such that no communication overhead
is involved. Furthermore, note that neither r nor c need to divide n and m without remainder. If
n mod r 6= 0 or m mod c 6= 0 the size of the submatrices at the edge of the matrix is automatically
adjusted accordingly (cf. Figure 3.2b). Due to internal reasons, each submatrix is assigned a
unique ID which is depicted by the encircled number in the upper left corner. The usage of this ID
will be explained in more detail in Sections 5.3 and 5.4.



�33

3.4.1.2 Compression Scheme

As already mentioned, one of our main objectives was to implement a data structure which sup-
ports arbitrary compression schemes. This is important since all compression schemes perform
a tradeoff between access time and storage space. For example, the CRS scheme has asymp-
totic access costs of O(log n), since the elements are stored row-wise in a sorted list, and needs
O(nnz) storage space with nnz being the number of non-zero elements [50]. In contrast, BSR
has asymptotic assess costs of O(1), since blocks are always stored entirely if containing more
than one non-zero element, and needs O(nnzb · r · c) storage space with nnzb being the number
of non-zero blocks. As the choice of the appropriate compression scheme depends on the user’s
application it is reasonable to leave this decision to her.

Currently, both compression schemes mentioned above are implemented. Note that our
design can easily be extended to provide arbitrary compression schemes, e.g. Jagged Diagonal
(JDD), Symmetric Skyline (SSK), Linpack Banded (BND) [50] etc. This is especially useful, if the
user wants to control the tradeoff between access time and storage space more precisely than
this is done by our default implementations. Again, this approach offers a high degree of flexibility,
since the user can choose between different compression schemes and even implement and use
her own (cf. Section 5.3).

3.4.1.3 Distribution Scheme

After partitioning the sparse matrix into multiple submatrices these submatrices need to be dis-
tributed among all collaborating processors. Rather than using a fixed distribution mechanism we
decided to implement a more flexible approach. In analogy to the compression scheme choosing
an appropriate distribution scheme is left to the user. This can be very useful since the user knows
best which parts of the matrix are not sparse such that this feature can be used as a flexible and
convenient load balancing mechanism.

Currently, four distribution schemes are implemented, namely the Block Distribution, where
processes are assigned contiguous blocks of submatrices, the Round Robin Distribution, where
submatrices are assigned to processes in a cyclic way, the ColumnDistribution, where subma-
trices are assigned to processes column-wise, and the RowDistribution, where submatrices are
assigned to processes row-wise. Note that arbitrary distribution schemes can easily be extended
such that the implemented load balancing mechanism is more suitable for the user’s application
(cf. Section 5.4).

3.4.2 Constructors

The following constructors can be used to create a new distributed sparse matrix. None of them
requires any communication, since initially, all processes have access to the whole data struc-
ture. Each process then autonomously decides which part of the data structure has to be copied
and stored locally. Constructors annotated with ? are enhanced by OpenMP directives (cf. Sec-
tions 3.1.3 and 5.5).

DistributedSparseMatrix(int n, int m, int r, int c)

Creates an empty distributed sparse matrix of size n× m. The parameters r and c determine
the size of the submatrices in which the whole sparse matrix is divided into. Note that
submatrices which are located at the right and/or lower edge of the sparse matrix are smaller



� 34

if n mod r 6= 0 and/or m mod c 6= 0. This is automatically taken care of inside the data
structure. Furthermore, note that n ≥ 1, m ≥ 1, 1 ≤ r ≤ n and 1 ≤ c ≤ m must hold.

DistributedSparseMatrix(int n, int m, int r, int c, E** a)

Creates an empty distributed sparse matrix of size n × m and initializes its values with the
corresponding values of the given matrix a. Obviously, a must be at least of size n × m. If
a is smaller, the program will exit. If a is greater, all surplus elements will be ignored. The
parameters r and c determine the size of the submatrices in which the whole sparse matrix
is divided into. Note that submatrices which are located at the right and/or lower edge of
the sparse matrix are smaller if n mod r 6= 0 and/or m mod c 6= 0. This is automatically
taken care of inside the data structure. Furthermore, note that n ≥ 1, m ≥ 1, 1 ≤ r ≤ n and
1 ≤ c ≤ m must hold.

DistributedSparseMatrix(const DistributedSparseMatrix<E, S, D>& B) ?

Copy constructor. Creates a new distributed sparse matrix by means of the given distributed
sparse matrix B.

3.4.3 Skeletons

The following sections provide a complete list of all skeletons currently implemented for the dis-
tributed sparse matrix. Skeletons annotated with ? are enhanced by OpenMP directives (cf. Sec-
tion 3.1.3).

3.4.3.1 Computation Skeletons

DistributedSparseMatrix<E, S, D> map(E (*f)(E a)) const

Creates a new distributed sparse matrix B by means of the copy constructor and initializes
each non-zero element bi,j by applying the given function f to the corresponding element
ai,j , i.e. replaces bi,j by f(ai,j) if ai,j 6= 0. The return value is a pointer to the new distributed
sparse matrix B. Note that the distributed sparse matrix A is left unchanged.

template<class E2> DistributedSparseMatrix<E2, S, D>* map(

Fct1<E, E2, F> f) const

Version for partial applications (see above).

DistributedSparseMatrix<E, S, D>* mapIndex(

E (*f)(E a, int rowIndex, int columnIndex)) const

Creates a new distributed sparse matrix B by means of the copy constructor and initializes
each non-zero element bi,j by applying the given function f to the corresponding element
ai,j , i.e. replaces bi,j by f(ai,j , i, j) if ai,j 6= 0. The return value is a pointer to the new
distributed sparse matrix B. Note that the distributed sparse matrix A is left unchanged and
that f may take the global index of the current element into account.
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template<class F, class E2> DistributedSparseMatrix<E2, S, D>* mapIndex(

Fct3<E, int, int, E2, F> f) const

Version for partial applications (see above).

void mapIndexInPlace(E (*f)(E a, int rowIndex, int columnIndex)) ?

Successively applies the given function f to all non-zero elements, i.e. replaces each ele-
ment ai,j by f(ai,j , i, j) if ai,j 6= 0.

template<class F> void mapIndexInPlace(Fct3<E, int, int, E, F> f) ?

Version for partial applications (see above).

void mapInPlace(E (*f)(E a)) ?

Successively applies the given function f to all non-zero elements, i.e. replaces each ele-
ment ai,j by f(ai,j) if ai,j 6= 0.

template<class F> void mapInPlace(Fct1<E, E, F> f) ?

Version for partial applications (see above).

void multiply(const E* const b, E* const x) const ?

Multiplies the distributed sparse matrix A with the given vector b and stores the result in the
given vector x, i.e. computes A · b = x. Obviously, b must at least be of length m and x at
least be of length n. If either or both of them are larger, surplus elements are left unchanged.
If either or both of them are smaller, the program will exit.

template<class E2, class S2> DistributedSparseMatrix<E, S, D>* zip(

const DistributedSparseMatrix<E2, S2, D>& B, E (*f)(E a, E2 b))

Creates a new distributed sparse matrix C by means of the copy constructor and initializes
each non-zero element ci,j by merging the corresponding elements of the distributed sparse
matrices A and B by means of the given function f, i.e. replaces each element ci,j by
f(ai,j , bi,j) if ai,j 6= 0 or bi,j 6= 0. Note that B may store elements of type E2 and that its
submatrices may be of type S2. For this function to complete successfully, both matrices
must have the same size and be distributed identically across the processes, i.e. nA = nB ,
mA = mB , rA = rB and cA = cB .

template<class E2, class E3, class S2> DistributedSparseMatrix<E3, S, D>*
zip(const DistributedSparseMatrix<E2, S2, D>& B,

Fct2<E, E2, E3, F> f) const

Version for partial applications (see above).
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template<class E2, class S2> DistributedSparseMatrix<E, S, D>* zipIndex(

const DistributedSparseMatrix<E2, S2, D>& B,

E (*f)(E a, E2 b, int rowIndex, int columnIndex))

Creates a new distributed sparse matrix C by means of the copy constructor and initializes
each non-zero element ci,j by merging the corresponding elements of the distributed sparse
matrices A and B by means of the given function f, i.e. replaces each element ci,j by
f(ai,j , bi,j , i, j) if ai,j 6= 0 or bi,j 6= 0. Note that f may take the global index of the current
element into account, that B may store elements of type E2 and that its submatrices may be
of type S2. For this function to complete successfully, both matrices must have the same
size and be distributed identically across the processes, i.e. nA = nB , mA = mB , rA = rB

and cA = cB .

template<class E2, class E3, class F, class S2> DistributedSparseMatrix

<E3, S, D>* zipIndex(const DistributedSparseMatrix<E2 ,S2, D>& B,

Fct4<E, E2, int, int, E3, F> f) const

Version for partial applications (see above).

template<class E2, class S2> void zipIndexInPlace( ?
const DistributedSparseMatrix<E2, S2, D>& B,

E (*f)(E a, E2 b, int rowIndex, int columnIndex))

Merges each non-zero element ai,j with its corresponding element bi,j of the given matrix B,
i.e. replaces each element ai,j by f(ai,j , bi,j , i, j) if ai,j 6= 0 or bi,j 6= 0. Note that f may take
the global index of the current element into account, that B may store elements of type E2

and that its submatrices may be of type S2. For this function to complete successfully, both
matrices must have the same size and be distributed identically across the processes, i.e.
nA = nB , mA = mB , rA = rB and cA = cB .

template<class E2, class E3, class F, class S2> void zipIndexInPlace( ?
const DistributedSparseMatrix<E2, S2, D>& B,

Fct4<E, E2, int, int, E3, F> f)

Version for partial applications (see above).

template<class E2, class S2> void zipInPlace( ?
const DistributedSparseMatrix<E2, S, D>& B, E (*f)(E a, E2 b))

Merges each element ai,j with its corresponding element bi,j of the given matrix B, i.e.
replaces each element ai,j by f(ai,j , bi,j , i, j) if ai,j 6= 0 or bi,j 6= 0. Note that B may store
elements of type E2 and that the submatrices of B may be of type S2. For this function to
complete successfully, both matrices must have the same size and be distributed identically
across the processes, i.e. nA = nB , mA = mB , rA = rB and cA = cB .

template<class E2, class E3, class F, class S2> void zipInPlace( ?
const DistributedSparseMatrix<E2, S2, D>& B, Fct2<E, E2, E3, F> f)

Version for partial applications (see above).
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3.4.3.2 Communication Skeletons

void getColumn(int index, E* const column) const ?

Copies the column with the given global index into the given array column. The length of the
given array must at least be n. If column is smaller, the program will exit. If column is larger,
surplus elements are left unchanged. If the given index is out of bounds, i.e. index < 0 or
index ≥ m, an IndexOutOfBoundException is thrown.

void getRow(int index, E* const row) const ?

Copies the row with the given global index into the given array row. The length of the
given array must at least be m. If row is smaller, the program will exit. If row is larger,
surplus elements are left unchanged. If the given index is out of bounds, i.e. index < 0 or
index ≥ n, an IndexOutOfBoundException is thrown.

void rotateColumn(int index, int steps)

Rotates the column with the given index cyclically up (steps < 0) or down (steps > 0). If
steps = 0, no rotation will be performed. The parameter steps controls the increment, i.e.
how many positions each element of the given column is shifted up or down. If the given col-
umn index is out of bounds, i.e. index < 0 or index ≥ m, an IndexOutOfBoundsException

is thrown.

void rotateColumns(int (*f)(int columnIndex))

Rotates all rows of the sparse matrix be means of the given function f. f is expected to
return the number of steps the column with the given columnIndex has to be rotated. If
steps < 0, the corresponding column will be rotated up. If steps > 0, the corresponding
column will be rotated down. If steps = 0, no rotation will be performed. The parameter
steps controls the increment, i.e. how many positions each element of the given column
is shifted up or down. If the given columnIndex is out of bounds, i.e. columnIndex < 0 or
columnIndex ≥ m, an IndexOutOfBoundsException is thrown.

template<class F> void rotateColumns(Fct1<int, int, F> f)

Version for partial applications (see above).

void rotateRow(int index, int steps)

Rotates the row with the given index cyclically to the left (steps < 0) or to the right (steps >
0). If steps = 0, no rotation will be performed. The parameter steps controls the in-
crement, i.e. how many positions each element of the given row is shifted to the left
or right. If the given row index is out of bounds, i.e. rowIndex < 0 or index ≥ n, an
IndexOutOfBoundsException is thrown.
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void rotateRows(int (*f)(int rowIndex))

Rotates all rows of the sparse matrix be means of the given function f. f is expected to
return the number of steps the row with the given rowIndex has to be rotated. If steps < 0,
the corresponding row will be rotated to the left. If steps > 0, the corresponding row will
be rotated to the right. If steps = 0, no rotation will be performed. The parameter steps
controls the increment, i.e. how many positions each element of the given row is shifted to
the left or right.If the given rowIndex is out of bounds, i.e. rowIndex < 0 or rowIndex ≥ n,
an IndexOutOfBoundsException is thrown.

template<class F> void rotateRows(Fct1<int, int, F> f)

Version for partial appliations (see above).

3.4.3.3 Combined Skeletons

E fold(E (*f)(E a, E b)) const ?

Folds all non-zero elements of the distributed sparse matrix into a single value by repeatedly
applying the given function f to them. f must be an associative and commutative binary
function.

template<class F> E fold(Fct2<E,E,E,F> f) const ?

Version for partial applications (see above).

E foldIndex(E (*f)(E a, E b, int rowIndex, int columnIndex)) const ?

Folds all non-zero elements of the distributed sparse matrix into a single value by repeatedly
applying the given function f to them. f must be an associative and commutative function
and may take the global index of the given element b into account.

template<class F> E foldIndex(Fct4<E,E,int,int,F> f) const ?

Version for partial appliations (see above).

3.4.4 Auxiliary Functions

The following auxiliary functions can be used to access and modify properties of the local partition
of a distributed sparse matrix. They are no skeletons, but they are typically used in user-defined
skeleton argument functions. Functions annotated with ? are enhanced by OpenMP directives (cf.
Section 3.1.3).
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int getC() const

Returns the number of columns of a submatrix, i.e. c.

int getColumnCount() const

Returns the number of columns of the distributed sparse matrix, i.e. m.

E getElement(int rowIndex, int columnIndex) const

Returns the value of the element with the given indexes. Note that 0 ≤ rowIndex < n and
0 ≤ columnIndex < m must hold. Otherwise, an IndexOutOfBoundsException is thrown.

int getElementCount() const ?

Returns the total number of non-zero elements nnz of the distributed sparse matrix.

int getElementCountInColumn(int index) const ?

Returns the total number of non-zero elements of the column with the given index. Note
that 0 ≤ index < m must hold. Otherwise, an IndexOutOfBoundsException is thrown.

int getElementCountInRow(int index) const ?

Returns the total number of non-zero elements of the row with the given index. Note that
0 ≤ index < n must hold true. Otherwise, an IndexOutOfBoundsException is thrown.

E getElementLocal(int rowIndex, int columnIndex)

Returns the value of the element with the given indexes. In contrast to getElement this
function does not broadcast the element to all collaborating processes but can rather be
used to acces local elements of the sparse matrix. The function is for example used in the
copy constructor. Note that 0 ≤ rowIndex < n and 0 ≤ columnIndex < m must hold.
Otherwise, an IndexOutOfBoundsException is thrown.

double getFillRate() const

Returns the ratio of n·m and the total number of non-zero elements nnz.

int getR() const

Returns the number of rows of a submatrix, i.e. r.
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int getRowCount() const

Returns the number of rows of the distributed sparse matrix, i.e. n.

bool isStoredLocally(int idSubmatrix) const

True, if the submatrix with the given ID is currently stored locally. False otherwise.

void print() const

Prints the whole distributed sparse matrix to standard output. Each line is surrounded by
square brackets, elements are separated by blanks.

void print(int rowIndex, int columnIndex, int rows, int columns) const

Prints a section of the distributed sparse matrix to standard output. Each line is surrounded
by square brackets, elements are separated by blanks. The section is defined by a starting
element and the number of rows and columns to output from this position. If rowIndex
and/or columnIndex are out of bounds, i.e. rowIndex < 0, rowIndex ≥ n, columnIndex < 0
or columnIndex ≥ m, or the section contains elements which are, i.e. rowIndex + rows ≥ n

or columnIndex + columns ≥ m, an IndexOutOfBoundsException is thrown. Furthermore,
note that the number of rows and columns to be printed are interpreted as absolute values
such that the starting element is the element in the upper-left corner of the section to print.

void setElement(int rowIndex, int columnIndex, E value)

Sets the element at the given position to the given value where 0 ≤ rowIndex < n and
0 ≤ columnIndex < m.

void setPrecision(int value)

Sets the number of decimal places to output when printing the distributed sparse matrix to
the given value.

3.4.5 Results

In order to prove the efficiency of our implementation we have conducted some experimental
benchmarks on a workstation cluster at the University of Münster. The cluster consists of 4
compute nodes, each equipped with two 2.66 GHz Intel Xeon Quad-Core processors (E5430)
and 32 GB RAM. The nodes are connected by a 10 Gbit Ethernet and are running under CentOS
5.2 using the MPICH2 1.0.7 implementation of MPI-2 [1, 51]. The test set-up can be described as
follows: We have used a sparse matrix from the Matrix Market [52] with n = m = 90, 449 and
nnz = 1, 921, 995 to measure the runtime of each skeleton function. To reduce measurement
uncertainties we have averaged all results over 100 test runs. The function used with the map
skeletons computed the sine of the given value. The fold skeletons used a function to sum up
all elements, whereas the zip skeletons used a function which returned the maximum of two
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values. The parameters used for our data structure were E = double, S = CrsSubmatrix,
D = RoundRobinDistribution, and r = c = 10. Note that the runtime of each skeleton is
mainly influenced by the given user-defined function whereas the scalability behaviour is fixed by
our implementation.

The results show that all skeletons exhibit reasonable scalability when increasing the number
np of processors and the number nt of threads, respectively. However, increasing nt does not
necessarily speed up a program. This is due to the fact that, when working with multiple threads,
synchronization in terms of critical sections is sometimes mandatory, since all threads on a single
processor access the same shared memory. For this reason, the skeletons map, mapIndex, zip,
and zipIndex have not been enhanced with OpenMP directives, since the additional overhead is
too high. In general, scalability is only ensured by increasing np while increasing nt can speed up
the computation in a lot of cases, but lacks scalability in some of them.

The next thing to mention is the performance of the skeletons which have the suffix Index

as part of their name compared to the skeletons which have not. Obviously, the former perform
slightly worse than the latter. This can be explained by the fact that the Index skeletons need to
perform additional computations, since they need to calculate and pass the global indexes of the
current element to the function supplied by the user. However, this additional overhead is only
marginal and its ratio will decrease as the complexity of the user-defined function increases, since
applying the given function to each element of the sparse matrix will take much more time than
setting each element of the data structure.
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(a) Runtime of the fold skeleton.
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(b) Speedup of the fold skeleton.
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(c) Runtime of the foldIndex skeleton.
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(d) Speedup of the foldIndex skeleton.

1 2 3 4 5 6 7 8

1
2

3
4

0,00

0,05

0,10

0,15

0,20

0,25

tim
e 

[s
]

nt [#]

np 
[#]

(e) Runtime of the mapIndexInPlace skeleton.
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(f) Speedup of the mapIndexInPlace skeleton.
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(g) Runtime of the mapInPlace skeleton.
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(h) Speedup of the mapInPlace skeleton.
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(i) Runtime of the zipIndexInPlace skeleton.
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(j) Speedup of the zipIndexInPlace skeleton.
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(k) Runtime of the zipInPlace skeleton.
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(l) Speedup of the zipInPlace skeleton.
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Figure 3.1: Test results of the benchmarks conducted on a multi-core cluster using up to np = 4
processors and nt = 8 threads. Note that the skeletons map, mapIndex, zip, and zipIndex were
only benchmarked depending on np, since they are not enhanced by OpenMP directives.
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Chapter 4

Task Parallel Skeletons

Most parallel applications are data parallel, and they can be handled with data parallel skeletons
alone. However, in some cases more structure is required. Consider for instance an image
processing application where a picture is first improved by applying several filters, then edges are
detected, and finally objects formed by these edges are identified possibly by comparing them
to a data base of known objects. Here, the mentioned stages could be connected by a pipeline
where each stage processes a sequence of pieces of the picture and delivers its results to the
next stage. Each stage could internally use data parallelism resulting in a two tier model, where
the computation is first structured by task parallel skeletons like the mentioned pipeline and where
atomic task parallel computations can be data parallel.

Task parallel skeletons provided by the Muesli skeleton library create a system of processes
communicating via streams of data by nesting and combining predefined process topologies such
as Pipeline, Farm, DivideAndConquer, and BranchAndBound. Moreover, Muesli provides
some predefined building blocks which represent atomic task parallel computations, such as
Atomic, Filter, Initial and Final. An atomic building block can be considered as a sort
of primitive skeleton, since it can be provided with a problem specific argument function, which is
internally applied to elements taken from a data stream. The argument function tells how each
input value is transformed into an output value. This function can either be a C++ function or a
partial application. However, in contrast to an algorithmic skeleton, an atomic building block does
not represent a parallel programming pattern.

Both, a task parallel skeleton and an atomic building block, are represented as a class, which
mainly provides a constructor and a method start to actually start the computation of the skele-
ton and all nested skeletons. Since all task parallel skeletons and basic building blocks offer the
same interface, each of them can be represented by an instance of a subclass of the abstract
class Process, which provides this interface (and a few auxiliary methods used internally in the
skeleton implementation). Each task parallel skeleton has the same property as an atomic build-
ing block, namely it accepts a sequence of inputs and produces a sequence of outputs. This
allows the task parallel skeletons to be arbitrarily nested. Most task parallel skeletons provided
by Muesli consume at least one stream of input values and produce at least one stream of output
values. An exception are the Initial and Final process provided by Muesli. They represent
the source and the sink of a stream, respectively. Thus, an Initial process does not consume
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any inputs, but only generates output values. In contrast, a Final process only consumes input
values and does not produce any output values.

A task parallel application works in two steps. First, a process topology is created by using
the constructors of the mentioned classes. This process topology reflects the actual nesting of
skeletons. Then, the system of processes is started by calling the start method of the outermost
skeleton. Internally, every atomic process will be assigned to a processor. For an implementation
on top of SPMD, this means that every processor will dispatch depending on its rank to the code
of its assigned process.

In the following, all task parallel algorithmic skeletons and their underlying building blocks
provided by Muesli are described in detail.

4.1 Atomic Buildung Blocks

In the sense of Cole [3], an algorithmic skeleton describes the overall structure of an algorithm
or a typical parallel programming pattern with gaps left for the definitions of problem specific
procedures and declarations. An atomic building block can be seen as a sort of primitive skeleton,
since it offers an interface for passing problem specific procedures and declarations, but neither
represents a class of algorithms (and its underlying computation scheme) such as divide and
conquer, nor a parallel programming pattern. An atomic building block refers to an atomic task
parallel process within the process system which simply generates data streams or transforms
elements of data streams by applying a user defined function. However, just like an algorithmic
skeleton, such a component can be used as a building block for farms and pipelines. In the
following, the atomic building blocks provided by Muesli are described in detail.

4.1.1 Initial

The Initial process represents the source of the data stream, and thus, it does not consume
any input values, but only generates output values. An output value typically describes a prob-
lem that is to be solved by the parallel application. An output value is automatically routed to a
successor of the Initial process corresponding to the process topology defined by the user.

template <class O>
class Initial: public Process {

public:
Initial(O* (* f)(Empty))
void start()

}

The output values can be generated from scratch or read by an external source such as a file
or a data base. How this primitive skeleton exactly generates the output values is described
by the argument function f, which is passed to the constructor. The function f has no explicit
arguments. The dummy argument Empty is inserted in order to simplify currying. However, the
implementation of such an argument function will typically use some side effects like reading from
a file in order to produce a pointer to an output value of type O. Internally, the Initial process
repeatedly calls f, until f returns a NULL pointer, which indicates the end of the output stream and
triggers the termination of the overall process system. In this case, all successors of the Initial
process are informed that the output stream ends and the Initial skeleton terminates.
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4.1.2 Final

In contrast to the Initial process, the Final process represents the sink of the data stream.
This building block does not produce any output values, but only consumes input values. An input
value represents the result of the computation which takes place within the process system.

template <class I>
class Final: public Process {

public:
Final(void (* f)(I))
void start()

}

The argument function f describes, what exactly has to be done with an input value of typ I.
This function is internally applied to each of the received input values, until the data stream ends.
Although the argument function f of the constructor does not explicitly return a result, f will
typically cause some side effects such as writing results to a file.

4.1.3 Atomic

An object of the class Atomic represents a non-nested task parallel computation within the pro-
cess system.

template <class I, class O>
class Atomic: public Process {

public:
Atomic(O* (* f)(I*), int n)
void start()

}

This construct is able to consume input streams from different predecessors and generates
at least one output stream. If several input streams are available, a fair reception of messages is
guaranteed. The skeleton selects a stream and takes a new input value from it. An input value is
transformed into an output value by applying the argument function f. The input and output values
are of the data type I and O, respectively. An output value is automatically routed to a successor
of the Atomic process corresponding to the user defined process topology. The function f is
repeatedly applied to every value in all input streams. To avoid copying overhead, only a pointer
to the input and output value is passed to and returned from f, respectively. The second argument
n specifies the number of processors which shall be used for this process. In case of a purely
task parallel computation, the only reasonable value for n is 1. However, remember that the
two-tier model allows data parallel computations inside of the Atomic process. In such a case n
determinates the number of processors which collaborate in the nested data parallel computation.

4.1.4 Filter

As well as the Atomic process, the Filter process represents a non-nested task parallel com-
putation within the process system. However, the mentioned Atomic process is restrictive in the
sense that for each input value exactly one output value is produced. A Filter removes this
restriction. For each input, an arbitrary number of output values (including 0) can be generated.
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template <class I, class O>
class Filter: public Process {

public:
Filter(void (* f)(Empty), int n)
void start()

}

template <class I> I* MSL_get()

template <class O> void MSL_put(O* value)

The Filter process is able to consume and produce multiple input and output streams,
respectively. In contrast to the Atomic process, the argument function f of the constructor is
not repeatedly applied to each input value, but it is called only once. The argument function
f of the Filter process has a dummy argument of type Emtpy (rather than type void (*
f)()). This dummy argument is inserted in order to avoid technical difficulties when calling
Filter with a partial application as argument. It is assumed that f uses the special auxiliary
function MSL get() in order to fetch the next input value of type I from an automatically selected
stream and MSL put() to route the computed output value of type O to one of the successors
corresponding to the process topology. Note that the functions MSL get() and MSL put() do
not need any additional information about where to fetch input and to deliver output values due to
the fact that this information is obtained from the user defined process topology. This removes a
nasty source of errors compared to usual message passing.

4.2 Skeletons

Besides a farm and a pipeline skeleton, which can be used to generate complex process systems,
Muesli provides a divide and conquer as well as a branch and bound skeleton. In the following
section, the application of each skeleton is described in detail. The focus is mainly on the skeleton
interfaces rather than on implementation details and design aspects, because the latter is the
content of several papers on which the current implementation of Muesli bases.

4.2.1 Branch & Bound

Branch and bound [53] is a well-known and frequently applied approach to solve certain optimiza-
tion problems, among them integer and mixed-integer linear optimization problems [53] and the
well-known traveling salesman problem [54]. Many practically important but NP-hard planning
problems can be formulated as (mixed) integer optimization problems, e.g. production planning,
crew scheduling, and vehicle routing. Branch and bound is often the only practically successful
approach to solve these problems exactly.

A branch and bound algorithm searches the complete solution space of a given problem for
the best solution. Due to the exponentially increasing number of feasible solutions, their explicit
enumeration is often impossible in practice. However, the knowledge about the currently best
solution, which is called incumbent, and the use of bounds for the function to be optimized enables
the algorithm to search parts of the solution space only implicitly. During the solution process, a
pool of yet unexplored subsets of the solution space, called the work pool, describes the current
status of the search. Initially there is only one subset, namely the complete solution space, and
the best solution found so far is infinity (for minimization problems). The unexplored subsets are
represented as nodes in a dynamically generated search tree which initially only contains the
root, and each iteration of the branch and bound algorithm processes one such node. This tree
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is called the state-space tree. Each node in the state-space tree has associated data, called its
description, which can be used to determine, whether it represents a solution and whether it has
any successors.

Typically, a branch and bound problem is solved by applying a small set of basic rules. While
the signature of these rules is always the same, the concrete formulation of the rules is problem
dependent. Starting from a given problem, subproblems with pairwise disjoint state spaces are
generated using an appropriate branching rule. The value of the best solution of a generated
subproblem can be estimated by applying a bounding rule. Using a selection rule, the subproblem
to be branched from next is chosen from the work pool. Last but not least subproblems with non-
optimal or inadmissible solutions can be eliminated using an elimination rule.
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Figure 4.1: A fully distributed branch and bound skeleton

The BranchAndBound skeleton provided by Muesli offers a computation scheme for branch
and bound algorithms to the user as predefined parallel component. Figure 4.1 illustrates the de-
sign of the skeleton. It consists of a set of peer solvers (in our example, n = 5 solvers are used),
which exchange subproblems, work requests, and load information messages. A subproblem cor-
responds to an unexplored subset of the solution space. The work pool is distributed among the
solvers, so that each of the solvers processes subproblems from its own local pool. Exactly one of
the solvers, called the master solver serves as an interface to the branch and bound skeleton. The
master solver receives a new optimization problem from a predecessor and delivers the solution
to a successor. The master solver is able to consume multiple input streams and generates at
least one output stream. The input and output values taken from and written to a stream are of
the same type I. If several input streams are available, the master solver repeatedly selects one,
takes a new optimization problem from the selected stream and initiates its solution. A fair recep-
tion of initial problems is guaranteed. The best solution is automatically routed to a successor of
the BranchAndBound skeleton corresponding to the user defined process topology. In contrast
to the divide and conquer skeleton (cf. 4.2.2), the BranchAndBound skeleton processes only one
optimization problem at a time in order to avoid memory problems.

template <class I>
class BranchAndBound: public Process {

public:
BranchAndBound(I** (*branch)(I*,int*),

void (*bound)(I*),
bool (*betterThan)(I*,I*),
bool (*isSolution)(I*),
int (*getLowerBound)(I*),
int d, int size)

void start()
}
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The user has to provide the BranchAndBound skeleton with five basic operators: branch,
bound, betterThan, isSolution, and getLowerBound. The branch operator has to imple-
ment a branching rule, that is, given an initial problem representing an unexplored subset of the
solution space, branch has to generate subproblems with pairwise disjoint state spaces. The
bound operator has to implement a bounding rule in order to estimate a given subproblem. The
corresponding lower bound must be returned by getLowerBound. betterThan is used to com-
pare two estimated subsets of the solution space, and isSolution is used to discover, whether
its argument is a solution to the problem or not. The basic operators are described in detail later.
In addition to the argument functions, the user has to pass two int parameters d and size. The
parameter d specifies the degree of the state space tree and describes the maximum number of
subproblems generated by branch. The actual number of subproblems generated by branch
may vary depending on the problem and must not exceed d, but may be lesser than d. The
argument size determines the number of solvers (including the master solver) which are used
to solve the optimization problems in parallel. The solvers are automatically generated and con-
nected by the BranchAndBound skeleton. If the skeleton only consists of a single solver there is
no need for any load balancing. In this case, all communication parts are bypassed to speed up
the computation.

Each worker repeatedly executes two phases: a communication phase and a solution phase.
Let us first consider the communication phase. In order to avoid that computation time is wasted
with the solution of irrelevant subproblems, new best solutions are distributed among the solvers
directly. If a solver has received new incumbents, it stores the best and discards the others.
Subproblems whose lower bounds are worse than the incumbent are removed from the work
pool. From time to time, the solvers exchange information about the quality and the number of
the problems stored in their local pools. This knowledge sharing triggers the load distribution and
is used to continuously mix the work pools of the solvers in order to provide each solver with
worthwhile problems. This guarantees that the problems with the best lower (upper) bounds are
distributed periodically among the solvers which significantly speeds up the overall computation.
The solution phase starts with selecting an unexamined subproblem from the work pool. The
work pool is organized as a heap and the selection rule implements a best-first search strategy.
The selected problem is decomposed into m subproblems by applying branch. For each of the
subproblems, we proceed as follows. First, we check, whether it is solved. If a new best solution
is detected, we update the local incumbent and broadcast it. A worse solution is discarded. If
the subproblem is not yet solved, the bound function is applied to compute a new lower (upper)
bound. After this, we check again whether the problem is solved in order to support branch and
bound algorithms which produce solutions by applying bound. If required, new incumbents are
stored locally and distributed again. An unsolved subproblem is only stored in the work pool, if its
lower bound is actually better than the incumbent. In this case, solving this subproblem may (but
needs not) lead to a new incumbent. Otherwise, the best solution to the subproblem cannot be
better than the best solution found so far, so that the subproblem can be discarded.

In the following, the basic operators, which have to be implemented by the user, are described
in detail.

I** (*branch)(I* p, int* size)

The branch operation describes how to divide a given problem p of type I into subproblems
of the same type. A problem corresponds to an unexplored subset of the solution space
which has to be divided into subproblems with pairwise disjoint state spaces. To avoid
copying overhead, a pointer to the problem is passed to this operation. The user has to
generate the subproblems and prepare an array of pointers to the subproblems. The return
value of this method is a pointer to this array of pointers. The subproblems should be
generated by the new operator. If the array contains pointers to local variables, an access
violation error is to be expected at runtime. Due to the fact that the number of generated
subproblems may vary depending on the problem passed to branch, the skeleton needs an



�51

additional information about the size of the array of subproblems. For this reason, branch
offers a second parameter int* size. By setting *size to the number of generated
problems, the skeleton is informed about the length of the array returned by branch. The
memory management is undertaken by the skeleton. Thus, the user does not have to care
about the deallocation of memory for the passed problem or the generated subproblems.
However, the user is responsible for deleting any other object which is created within the
body of branch.

void (*bound)(I* p)

The bound method is used to compute a lower (upper) bound for the best solution to a given
minimization (maximization) problem p of type I. To avoid copying overhead, a pointer to
the problem is passed to this operation. This method is internally used to prune the work
pool and thus to search only parts of the solution space by comparing the computed bound
with the incumbent. If the best solution found so far is better (in the sense of betterThan)
than the lower (upper) bound for the best solution which can be found by solving p, then it
is not necessary to consider p any more and the problem can be discarded.

bool (*betterThan)(I* p1, I* p2)

This method compares two given problems p1 and p2 of type I and has to deliver true, iff
the lower (upper) bound for the best solution to problem p1 is better than the lower (upper)
bound for the best solution to p2 in case of a minimization (maximization) problem. Oth-
erwise false must be returned. Internally, this method is used to maintain the local work
pool which is implemented as a heap. The root of the heap refers to the problem with the
lowest bound in the work pool. Thus, the selection rule provided by the skeleton implements
a best-first search strategy. Moreover, this method is used to compare a problem with the
incumbent in order to decide if the problem can be discarded.

bool (*isSolution)(I* p)

The isSolution operator has to return true, if its argument p represents a solution of
the optimization problem. Otherwise false must be returned. Again, only a pointer to the
problem is passed to the method in order to avoid copying overhead.

int (*getLowerBound)(I* p)

This method simply has to return a lower (upper) bound of the value of the best solution
of the problem p. Internally, it is used to create load information messages. In the current
implementation the bounds are represented as int values.

4.2.2 Divide & Conquer

Divide and conquer is a common computation paradigm, in which the solution to a problem is
obtained by dividing the original problem into smaller subproblems and solving the subproblems
recursively. Then, solutions for the subproblems must be combined to form the final solution of
the entire problem. Simple problems are solved directly without dividing them further.
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Examples of divide and conquer computations include various sorting methods such as
mergesort and quicksort, computational geometry algorithms such as the construction of the
convex hull, combinatorial search such as constraint satisfaction techniques, graph algorithmic
problems such as graph coloring, numerical methods such as the Karatsuba multiplication algo-
rithm, and linear algebra such as Strassen’s algorithm for matrix multiplication. Some applications
require solving several divide and conquer problems in sequence. Examples here are the 2D or
3D triangulation of several geometric objects, matrix chain multiplication problems, in which parts
of the chain can be computed independently from each other, or factorization of several large
numbers.
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Figure 4.2: A fully distributed divide and conquer skeleton for stream processing

The StreamDC skeleton provided by Muesli is based on an implementation scheme for divide
and conquer and offers it to the user as predefined parallel component. Figure 4.2 illustrates the
design of the skeleton. It consists of a set of peer solvers, which exchange subproblems, partial
solutions, and work requests. In our example, n = 5 solvers are used. The work pool and the
solution pool, which are used to maintain the subproblems and partial solutions, are distributed
among the solvers, and each of the solvers processes subproblems and partial solutions from its
own local pools. If a solver finds it own work pool empty, it sends a work request to a randomly
selected neighbor corresponding to the given internal topology, which triggers the load distribution.
If the work pool of the receiver is not empty, it selects a subproblem from the work pool which is
expected to be big and delegates it to the sender. Exactly n of the solvers serve as an interface to
the skeleton, which are referred to as master solvers. A master solver receives a new divide and
conquer problem from a predecessor and delivers the solution to its successor. By using more
than one master solver, the skeleton is able to process several divide and conquer problems at a
time.

template <class I, class O>
class StreamDC: public Process {

public:
StreamDC(I** (*divide)(I*),

O* (*combine)(O**),
O* (*solve)(I*),
bool (*isSimple)(I*),
int d, int size, int probs)

void start()
}

The user has to provide the skeleton with four basic operators: divide, combine, isSimple,
and solve. If isSimple indicates that a problem is simple enough, it can be solved directly by
applying solve. Otherwise, the problem is divided into subproblems by calling divide. Solutions
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of subproblems can be combined to the solution of the corresponding parent problem by applying
combine. The basic operators are described in detail later. In addition to the argument functions,
the user has to pass three int parameters d, size, and n. The parameter d specifies the degree
of the divide and conquer tree and describes how many subproblems are generated by divide
and how many partial solutions are required by combine. The argument size determines the
number of solvers (including master solvers) which are used to solve the divide and conquer
problems in parallel. The solvers are automatically generated and connected by the StreamDC
skeleton. Thus, the solvers are not visible to the user. If the skeleton only consists of a single
solver there is no need for load balancing. In this case, all communication parts are bypassed
to speed up the computation. Finally, n declares how many master solvers should be used by
the skeleton, and thus, how many divide and conquer problems may be solved in parallel by the
skeleton at a time. Note that n must be greater than 0 and less or equal than size. The number
of master solvers corresponds to the number of entrances and exits of this skeleton. If only one
big divide and conquer problem has to be solved, the only reasonable value for n is 1. Using more
than one master solver is recommended, if a sequence of divide and conquer problems must be
processed. In this way it is possible to adapt the number of problems to be solved in parallel to
the available distributed memory offered by the solvers, as well as to speed up the computation
significantly.

Each master solver is able to consume multiple input streams and generates at least one
output stream. If several input streams are available, a master solver repeatedly selects one,
takes a new divide and conquer problem from the selected stream and initiates its solution. A fair
reception of messages is guaranteed. The input and output values taken from and written to a
stream are of the data type I and O, respectively. The solution of a divide and conquer problem is
automatically routed to a successor of the StreamDC skeleton corresponding to the user defined
process topology.

A detailed explanation of the design and implementation of the StreamDC skeleton and its
components can be found in [37, 38, 39]. In the following, the basic operators, which have to be
implemented by the user, are described in detail.

I** (*divide)(I*)

The divide operation describes how to divide a given problem of type I into subproblems
of the same type. To avoid copying overhead, a pointer to the problem is passed to this
operation. The user has to generate the subproblems and prepare an array of pointers to
the subproblems. The array size must match the parameter d, which specifies the degree
of the divide and conquer tree. The return value of this method is a pointer to this array of
pointers. The subproblems should be generated by the new operator. If the array contains
pointers to local variables, an access violation error is to be expected at runtime. The
memory management is undertaken by the skeleton. Thus, the user does not have to care
about the deallocation of memory for the passed problem or the generated subproblems.
However, the user is responsible for deleting any other object which is created within the
body of divide.

O* (*combine)(O**)

The combine operation specifies the strategy of combining partial solutions of type O to the
corresponded solution of the parent problem, which is of type O as well. To avoid copying
overhead, only a pointer to an array is passed to this method, which contains pointers to
the partial solutions. The size of this array is implicitely given by the parameter d which
determines the degree of the divide and conquer tree. The user has to create the parent
solution and return a pointer to it. As for the divide operator, the user should not return
a pointer to a local variable in order to avoid memory access violation errors. The memory
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management for the partial solutions and the return value is undertaken by the skeleton.
Thus, the user does not have to care about the deallocation of memory for the passed
problem or the generated subproblems. However, the user is responsible for deleting any
other object which is created within the body of divide.

O* (*solve)(I*)

The solve operator typically implements a sequential divide and conquer algorithm and is
applied on problems which are identified as simple problems by isSimple. The problem
to be solved is referenced by a pointer I* which is passed to this method by the skeleton.
The return value of solve is a pointer O* to the corresponding solution. The user has to
avoid returning a pointer to a local variable due to memory access violation errors. As for
divide and combine, the memory management is undertaken by the skeleton. Thus, the
user does not have to care about the deallocation of memory for the passed problem or the
generated solution, but only for objects which are created within the body of solve for any
other reason. It is possible to solve the problem in place if the problem and its solution are
of the same type T (which is the case for sorting problems, for instance). In this case, the
pointer to the problem references the solution as well, and can be returned by solve. If
the pointer to the problem is not equal to the pointer returned by this method, the problem
is assumed not to be required any more, and the memory for this problem is freed by the
skeleton.

bool (*isSimple)(I*)

This function indicates whether a problem is simple enough to be solved directly or it needs
to be divided it into subproblems. Given a pointer to the problem of type I, this method has
to return true for simple problems and false for problem which have to be divided further.
Even though this is a very simple method which typically can be implemented in a very few
lines of code, it greatly influences the runtime of the considered application. Thus, it must
be carefully implemented by the user.

Dividing problems and maintaining them in a work pool introduces overhead. It appears rea-
sonable to solve subproblems locally by calling a sequential (divide and conquer) algorithm
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at a time when the subproblem sizes have reached a certain threshold T . Unfortunately, the
specific value of T is problem dependent and therefore hard to predict reliably by the user.
If T is large, only few big subproblems are generated and distributed among the solvers,
which can lead to an unbalanced load distribution. Thus, the threshold T has to be chosen
small enough such that a sufficient number of subproblems is generated to ensure a good
load balancing. Dividing a problem causes costs for subproblem generation, combination,
and maintenance. Thus, T has to limit the total number of generated subproblems. In ei-
ther case, T determines the depth of the divide and conquer tree and the number of leaf
nodes stored in the work pool, i.e. subproblems, which are solved sequentially. Using the
Karatsuba multiplication algorithm for big integers [55] as example, Fig. 4.3 reveals that a
bad choise of T typically involves high performance penalties. If only one solver is used,
it is recommended to enable a purely sequential computation by adjusting T to the size of
the initial problem. In this case, the initial problem is instantly identified as simple enough to
solve it directly by the user defined solve operator. Thus, there is no need for a divide
or combine operator call at all, and the work and solution pool are bypassed as well. The
more solvers are used, the more subproblems must be generated to assure a good load
balancing. In the considered example application, where we have generated and multiplied
two numbers with 220 = 1048576 digits for each test run, T = 4096 is a good choise, that is,
a problem of multiplicating two numbers with T = 4096 digits is identified as a simple prob-
lem and thus solved sequentially with solve. This leads to 6561 subproblems distributed
among the solvers.

4.2.3 Pipe

The Pipe skeleton represents a logical predecessor-successor-relationship between skeletons.
Building a pipeline of skeletons is the easiest form of coordination in Muesli.

class Pipe: public Process {
public:

Pipe(Process& p1, Process& p2)
Pipe(Process& p1, Process& p2, Process& p3)
...
void start()

}

The constructor Pipe creates a pipeline of skeletons. The constructor is overloaded and
the constructor which is called depends on the number of arguments that are passed to it. The
processes passed to the constructor may be basic building blocks such as Initial or Final,
skeletons such as DivideAndConquer or BranchAndBound, or nested skeletons such a Farm
or even another Pipe. The Pipe skeleton connects the passed skeletons and enables the data
transfer between them, including a fair load balancing. The output values of p1 are routed to
p2, and, in the case of the second constructor, the output values of p2 are routed to p3. For
this reason, each Process (except for Initial and Final) offers at least one entrance to
which a data stream can be sent, as well as at least one exit, from which a data stream is sent.
Each entrance and exit is mapped to a processor which is part of the skeleton or building block,
repectively. The Pipe skeleton connects each exit of p1 with each entrance offered by p2. p2
and p3 are connected in the same manner (Fig. 4.4). The entrances and exits of the pipeline
are represented by the entrances of the first process and the exits of the last process passed to
the constructor. If the first and last process in the pipeline are an Initial and Final process,
respectively, the pipeline neither has an entrance nor an exit.

Note, that the interface of two adjacent skeletons within the pipeline must match the data type
of the exchanged data. If, for instance, p1 generates output values of type T at its exits, p2 must
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Figure 4.4: A farm skeleton (left) and a pipeline of farms (right).

accept input values of type T at its entrances as well. Otherwise a compiler time error will occur.
Due to the fact that all entrances and exits of two adjacent skeletons are connected to each other,
it is possible to connect two farms of different sizes, or farms with basic building blocks. The Pipe
skeleton can be used to combine simple skeletons to a more complex skeleton. By passing a
pipeline to the constructor of Farm or another Pipe skeleton, complex process topologies can be
generated (Fig. 4.4).

4.2.4 Farm

A Farm consists of a set of peer worker processes, which solve problems independently from
each other. The use of a farm is expedient to speed up the overall computation, if a multiplicity
of problems of the same type have to be solved. In this case, the problems are automatically
distributed among the workers, so that they can be processed in parallel.

In many farm implementations, the internal farm topology is based on a master/worker scheme.
In this case, a farm consists of a farmer process and several worker processes. The farmer ac-
cepts a sequence of tasks from some predecessor process and propagates each task to a worker.
The worker executes the task and delivers the result back to the farmer who propagates it to a
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successor process. As we have shown in [34, 36], this design comes with several disadvantages
such as high communication costs, which quickly results in a bottleneck situation at the farmer
process. In Muesli, a fully distributed implementation scheme is used (Fig. 4.4a). The farmer
process is omitted, and the skeleton only consists of a set of peer worker processes. This ap-
proach reduces the overhead for the propagation of messages and omits a potential source of a
bottleneck in the user defined process system.

template <class I, class O>
class Farm: public Process {

public:
Farm(Process& worker, int n)
void start()

}

The constructor Farm takes an arbitrary process (an atomic task parallel process or another
skeleton) and generates additional n-1 copies of it, so that the farm finally consists of n workers.
Each of the workers serves as an interface to the Farm. Thus, the type of the input and output
values I and O, which are sent to and from the farm, must match the types of the input and output
values of worker processes. The entrances and exits of the farm result from the entrances and
exits of each worker.

The Farm skeleton can be arbitrarily nested with pipelines or other farms. For instance, it
is possible to construct a pipeline of farms, as depicted in Fig. 4.4b. A sequence of farms may,
for instance, make sense, if each worker of the first farm uses one processor, while each worker
of the second farm performs a data parallel computation on several processors. Note that the
sequence of the output values produced by the farm is non-deterministic because the workers
produce its outputs indepentendly from each other (Fig. 4.4).
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Chapter 5

Selected Implementation Aspects

5.1 Serialization

Object serialization is an important issue in the context of data storage and transmission due to
the fact that the objects to be interchanged among task or data parallel skeletons often have a
dynamic size or contain pointer structures. In this case, it is necessary to write the object data to
a contiguous memory block before sending it over the network, and to restore the object at the
receivers’ site. In contrast to languages such as (Object) Pascal or Java, C++ does not inherently
support object serialization. Due to the lack of runtime metadata, serialization is a difficult feature
to implement in C++. Several approaches to overcome this problem have been proposed, among
them C++ language extentions and C++ serialization libraries based on XML and/or binary for-
mats. The C++ dialect opC++ extends the standard C++ language with additional concepts such
as reflection and serialization. Xparam [56] is a general-purpose tool for parameter handling in
C++. It allows object serialization and deserialization in a format that is human-readable and
-writeable, and is unaffected by issues of word-size and endianity. Sweet Persist is a C++ serial-
ization library that provides serialization of objects to and from XML and binary formats. It requires
Microsoft Visual Studio 2005 (MSVC 8.0) and Boost [57, 58]. Another library that provides serial-
ization is GenSerial [59] which currently only works in Visual C++ .NET 2003.

To perform object serialization in a platform independent manner, Muesli provides the abstract
class MSL Serializable.

class MSL_Serializable {
public:

MSL_Serializable() {}
virtual ˜MSL_Serializable() {}
virtual void reduce(void* pBuffer, int bufferSize) = 0;
virtual void expand(void* pBuffer, int bufferSize) = 0;
virtual int getSize() = 0;

};

An important objective is to avoid runtime overhead for basic data types or types that do not
require serialization. Each class, whose instances represent objects which have to be transmit-
ted serialized, must be derived from MSL Serializable and implement the inherited methods
reduce, expand, and getSize. Objects which are not derived from MSL Serializable are
supposed to be already serialized, such as pointerless C++ structures or basic data types. In
this case, there is no need for an additional serialization (the object data is already stored in a
contiguous memory block), and the objects can be directly transmitted to the receiver.
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For the serialized communication operations, Muesli allocates a contiguous memory block
corresponding to the size of the object to be serialized. The method reduce is used to write
the object data to the buffer, whereas expand reads the object data from the buffer and restores
the object. The concrete size of the buffer which is required to store the serialized object has to
be calculated by the method getSize. Muesli internally allocates a send buffer matching this
size and calls reduce to write the data into the buffer immediately before sending out the packet.
The address and the size of the send buffer are passed to reduce by the parameters pBuffer
and bufferSize, respectively, which can be used by the user to copy the required object data
to the buffer. The method expand is called immediately after receiving a serialized message.
Here, pBuffer and bufferSize identify the address and size of the receive buffer, which stores
the serialized object data. The object can be restored by the user from the receive buffer by
reading the object data in the same sequence in which the data has been written to the send
buffer. Please note, that the send and receive buffer cannot be reused because each send and
receive operation create a new buffer for the data transmission. After a send and receive operation
has been completed, the memory for the send and receive buffer, respectively, is deallocated
immediately. That is, when restoring an object with expand it is strongly recommended to copy
the data explicitly from the receive buffer and not to point into the address space of the receive
buffer. Otherwise memory access violation errors can occur.

The key for our serialization mechanism is the detection of an inheritance relationship at
compile time [60]. This problem can be solved with the aid of the sizeof operator, which is
surprisingly powerful because it can be applied to any expression irrespective of its complexity.
sizeof returns the size of an expression without evaluating it at runtime.

The detection of conversions is based on the application of sizeof to a function which is
overloaded two times. The first implementation of this function accepts a type which can be con-
verted to U, the second one accepts everything else. Then, the overloaded function is applied on
a temporary element of type T. If the first function is selected by the compiler, T can be converted
to U, otherwise the second function is called. In order to detect which function is applied, the
overloaded functions are provided with a return type of different size. The differentiation is then
carried out with sizeof.

At first, we generate two types of different size. In general, basic data types such as char
and long double have a different size. However, this property is not guaranteed by the C++
standard, so we use this simple scheme instead:

typedef char Small; // sizeof(Small) = 1
class Big { char dummy[2]; }; // sizeof(Big) > 1

Moreover, we need two overloaded functions. The first one accepts a type U, the second one
accepts everything else:

static Small Test(U);
static Big Test(...);

Passing a C++ object to a function with an ellipse1 leads to an undefined result. However, the
function is neither applied nor implemented, because sizeof does not evaluate the arguments
of the function. In the next step, the Test function is applied to a temporary element of type T,
and the return value is passed to the sizeof operator. A problem is to create an object of type
T, if the standard constructor of T is private. This problem is solved with a simple dummy function

static T MakeT();

1denotes a non-specified number of parameters
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so that we can apply:

const bool exists = sizeof(Test(MakeT())) == sizeof(Small);

Please remember, that sizeof does not evaluate any arguments. Moreover, MakeT and
Test do not do anything and are not even implemented.

This is all provided as a class template in order to hide the details of the type derivation. The
constant sameType of the class MSL Conversion is used to detect, whether T and U have the
same type.

#define MSL_IS_SUPERCLASS(T, U)
(MSL_Conversion<const U*, const T*>::exists &&
!MSL_Conversion<const T*, const void*>::sameType)

template <class T, class U>
class MSL_Conversion {

private:
typedef char Small;
class Big { char dummy[2]; };
static Small Test(U);
static Big Test(...);
static T MakeT();

public:
enum { exists = sizeof(Test(MakeT())) == sizeof(Small) };
enum { sameType = false };

};

template <class T>
class MSL_Conversion<T,T> {

public:
enum { exists = true, sameType = true};

};

MSL IS SUPERCLASS determines the convertibility of const U* to const T*. The oper-
ation MSL IS SUPERCLASS(T,U) returns true, iff U is derived from T or if T and U are of the
same type.

Internally, Muesli provides implementations of a serialized MSL Send and MSL Receive op-
eration used for transmitting instances of classes derived from MSL Serializable, as well as
non-serialized MSL Send and MSL Receive communication operations for already serialized ob-
jects. Within the skeleton source code, only the wrapper methods MSL Send and MSL Receive
are used, which are each replaced by the required serialized or non-serialized operation at com-
pile time in order to avoid performance penalties at runtime. A problem is, that the signature of
both, the serialized and non-serialized implementation of the MSL Send (MSL Receive) opera-
tion, is identical:

MSL_Send(ProcessorNo destination, Data* pData, int tag)

Thus, MSL Send (MSL Receive) cannot be overloaded directly. The solution of this problem
is to extend the signature of these functions by an additional type parameter. A simple template
proves helpful:

template <bool v>
struct MSL_Bool2Type { enum {value = v}; };
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MSL Int2Type creates a different type for each integer constant, which is passed to this
template. This is due to the fact that different template instances are different types. Therefore,
MSL Int2Type<true> differs from MSL Int2Type<false>. The type generating value v is
stored in the enum variable value.

By extending the signature of the serialized and non-serialized send and receive opera-
tion, the compiler is able to distinguish between both implementations, and MSL Send as well
as (MSL Receive) can be overloaded. This is shown at the example of MSL Send in the follow-
ing. MSL Receive is implemented in the same way.

// for objects to be serialized
template <class Data>
inline void MSL_Send(ProcessorNo destination,

Data* pData, int tag,
MSL_Int2Type<true>) {

int size = pData->getSize();
void* buffer = malloc(size);
if (buffer == NULL)

std::cout << "OUT OF MEMORY ERROR" << std::endl;
pData->reduce(buffer,size);
MPI_Send(buffer, size, MPI_BYTE, destination, tag, MPI_COMM_WORLD);
free(buffer);

}

// for already serialized objects
template <class Data>
inline void MSL_Send(ProcessorNo destination,

Data* pData, int tag,
MSL_Int2Type<false>) {

MPI_Send(pData, sizeof(Data), MPI_BYTE, destination,
tag, MPI_COMM_WORLD);

}

The corresponding wrapper for MSL Send is:

template <class Data>
inline void MSL_Send(ProcessorNo destination,

Data* pData, int tag = MSLT_MYTAG) {
if (destination == MSL_UNDEFINED)

throws(UndefinedDestinationException());
MSL_Send(destination, pData, tag,

MSL_Int2Type<MSL_IS_SUPERCLASS(MSL_Serializable, Data)>());
}

The expression

MSL_Int2Type<MSL_IS_SUPERCLASS(MSL_Serializable, Data)>())

is reduced by the compiler to MSL Int2Type<true> if the class Data is derived from
MSL Serializable, otherwise the result is MSL Int2Type<false>. Thus,

MSL_Send(destination, pData, tag,
MSL_Int2Type<MSL_IS_SUPERCLASS(MSL_Serializable, Data)>());

is replaced (due to the inline operator) by the required implementation depending on Data at
compile time.
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5.2 DistributedSparseMatrix<E,S,D>

Having established the conceptual basis in Section 2 this section describes the implementation
details of our data structure. Most of the aforementioned flexibility is implemented using three
core mechanisms of C++, namely template parameters, inheritance, and polymorphism. Listing
2 shows the class definition of our data structure introducing the template parameters E, S and
D. These template parameters are used to flexibly define the data type of the matrix elements
(E), the compression scheme of the submatrices (S), and their distribution scheme (D). All three
parameters are provided with default values in case the user does not want to provide specific
ones. Here, the default values are double for the type, CrsSubmatrix<E> for the compression
scheme and RoundRobinDistribution for the distribution scheme. Both of the two classes
are explained in detail in the following subsections.

1 template<class E = double,
2 class S = CrsSubmatrix<E>,
3 class D = RoundRobinDistribution>
4 class DistributedSparseMatrix {...};

Listing 2: Definition of the class DistributedSparseMatrix showing the three template pa-
rameters E, S and D.

As with all our task and data parallel skeletons, our data structure is defined in the file
Muesli.h2. Using it is very convenient, one simply has to include the header file with the
#include compiler directive. Listing 3 shows how to declare a distributed sparse matrix using
default values for the template parameters and how to declare a matrix using specific arguments.
The classes BsrSubmatrix and BlockDistribution are explained in detail in the following
subsections.

Besides providing support for algorithmic skeletons our data structure offers functions for
rotating its rows and columns, to multiply the matrix with a row vector and to write the whole or a
part of the sparse matrix to standard output. The constructors of our data structure can be used to
create a distributed sparse matrix by means of a given two-dimensional array of type E, to create
an empty matrix which is successively filled by calls to the function setElement (cf. Section 5.3),
or to create a new distributed sparse matrix by copying an existing matrix.

1 #include "Muesli.h"
2

3 void main(int argc, char** argv) {
4 int n = 100, m = 100, r = 10, c = 10;
5 DistributedSparseMatrix< > A(n, m, r, c);
6 DistributedSparseMatrix<double, BsrSubmatrix<double>,
7 BlockDistribution> B(n, m, r, c);
8 }

Listing 3: Declaration of two distributed sparse matrices. Matrix A uses default arguments,
whereas matrix B is instantiated using specific arguments.

2Note that due to the usage of template parameters, separating the source code into a header and a source file is not
possible. In fact, we use the inclusion model such that the header file contains all source code.
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5.3 Submatrix<E>

As already mentioned in Section 3.4.1.1, the whole sparse matrix is partitioned into multiple sub-
matrices. Each submatrix is responsible for storing and compressing its local elements such that
arbitrary compression schemes can easily be supported. In order to do so, we provide an inter-
face in terms of an abstract class which is defined in the file Submatrix.h. Listing 4 shows most
of its implementation details omitting only trivial attributes and functions.

Apart from attributes for its ID, the number of non-zero elements and the local dimension of
the submatrix (cf. line 2) the class provides a vector from the C++ Standard Template Library
[43] in order to store locally available elements (cf. line 3). Again, the type of these elements
is passed as a template argument. The most important part of this class is shown in lines 5
and 6. Here, two pure virtual functions3 are declared in order to access locally stored elements
of the submatrix. Both of them expect local row and column indexes, respectively and must
be overridden in any concrete subclass as they are responsible for handling the implemented
compression scheme. However, sometimes it is useful to bypass the compression scheme and
simply work on the raw values stored by the submatrix. This can be done using the functions
getElementLocal and setElementLocal (cf. lines 8 and 9). Both of them expect an index
referring to a position in the values array declared in line 3. In order to determine the local
row and column indexes of an element which is accessed using these functions, one can use the
functions getColumnIndexLocal and getRowIndexLocal, respectively (cf. lines 11 and 12). Note
that both of them again are declared as pure virtual. The init functions declared in lines 14–18
are used to initialize the submatrix: The first one initializes an empty submatrix, the second one
initializes the submatrix by means of the given two-dimensional array matrix, and the third one
only expects a single value and its coordinates to initialize the submatrix. Again, it is mandatory
to override these functions.

1 template<class E = double> class Submatrix {
2 int id, nnz, nLocal, mLocal;
3 std::vector<E> values;
4

5 virtual E getElement(int row, int col) const = 0;
6 virtual void setElement(int row, int col, E val) = 0;
7

8 E getElementLocal(int index) const;
9 E setElementLocal(int index, E val);

10

11 virtual int getColumnIndexLocal(int index) const = 0;
12 virtual int getRowIndexLocal(int index) const = 0;
13

14 virtual void init(int id, int nLocal, int mLocal) = 0;
15 virtual void init(int id, int nLocal, int mLocal,
16 E** const matrix) = 0;
17 virtual void init(int id, int nLocal, int mLocal,
18 E val, int row, int col) = 0;
19 };

Listing 4: Definition of the class Submatrix. For the sake of clarity trivial attributes and functions
are omitted.

By using mechanisms such as polymorphism and dynamic binding our data structure can
offer a lot of flexibility. This additional layer of abstraction is very useful, since we can internally
work with the abstract class Submatrix. Thus, extending our data structure with arbitrary user-
defined compression schemes is very easy: Simply extend a class from the class Submatrix and

3The keyword virtual is used to dynamically bind the function such that the compiler can invoke the correct function at
runtime. The suffix = 0 is used to denote that a function is abstract and must be overridden in a conrete subclass.
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implement all pure virtual functions. In order to get started directly, we provide two default imple-
mentations of the Compressed Row Storage and the Block Sparse Row compression schemes.
The corresponding classes are named CrsSubmatrix and BsrSubmatrix, respectively.

5.4 Distribution

As already mentioned, after dividing the whole sparse matrix into multiple submatrices these are
distributed among all collaborating processes (cf. Section 3.4.1.3). Another important feature of
our data structure is the ability to user-define this distribution scheme as opposed to implementing
a fixed one. This is very important and useful since the distribution scheme determines which
process is responsible for storing which submatrix. Conceptually, this can be seen as a load
balancing mechanism and comes in handy if the processors of a multiprocessor system exhibit
different clock rates such that faster processors can handle more submatrices. The distribution
scheme can also be used to assign all submatrices of a row and/or column to a single process.
Thus, rotating rows and/or columns can be performed much faster since all elements are locally
available to a process such that function calls to MPI routines are not necessary. As the user
knows best about the characteristics of her application, it is at best to leave the decision how to
distribute the submatrices to her.

1 class Distribution {
2 int n, m, r, c, np;
3

4 void init(int n, int m, int r, int c, int np) {...}
5

6 virtual int getIdProcess(int idSubmatrix) const = 0;
7 };

Listing 5: Definition of the class Distribution. For the sake of clarity trivial attributes and
functions are omitted.

Again, our approach is implemented using polymorphism and inheritance. We provide an
interface in terms of an abstract class defined in the file Distribution.h (cf. Listing 5). As
already mentioned, each submatrix is assigned a unique ID. This ID is now used to assign each
submatrix to one of the np processes with np ∈ N (cf. Figure 5.1). The mapping between the ID of
the submatrix and the ID of the process is performed by the pure virtual function getIdProcess
(cf. line 4). This function expects the ID of a submatrix and returns the ID of the process respon-
sible for storing the submatrix with the given ID. Obviously, this function must be overridden in any
concrete subclass. In order to perform the mapping the function may use the variables n, m, r,
c, and np which are passed using the init function (cf. lines 2 and 3). Currently, we provide
four default distribution schemes which are implemented in the classes BlockDistribution,
ColumnDistribution, RoundRobinDistribution, and RowDistribution:

� The class BlockDistribution can be used to assign whole blocks of contiguous sub-
matrices to each process. If the number of submatrices ns can be divided by the number
of processes np without remainder, each process receives a block of ns

np submatrices. Oth-
erwise, the last processes are assigned one submatrix less than the first processes (cf.
Figure 5.1).

� The class ColumnDistribution can be used to assign complete columns of submatrices
to each process. The assignment is performed in an alternating way, i.e. after each process
has been assigned a complete column, the next column is assigned to the first process
again etc.
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� The class RoundRobinDistribution can be used to assign submatrices to processes in
an alternating way. A process is responsible for a certain submatrix, if the following formula
holds true: idProcess = idSubmatrix mod np.

� The class RowDistribution can be used to assign complete row of submatrices to each
process. The assignment is performed in an alternating way, i.e. after each process has
been assigned a complete row, the next row is assigned to the first process again etc.
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(a)

distribution class p0 p1

BlockDistribution 0, 1, 2, 3, 4 5, 6, 7, 8
ColumnDistribution 0, 3, 6, 2, 5, 8 1, 4, 7
RoundRobinDistribution 0, 2, 4, 6, 8 1, 3, 5, 7
RowDistribution 0, 1, 2, 6, 7, 8 3, 4, 5

(b)

Figure 5.1: Distributing nine submatrices among two processes using different classes for the
distribution. pi denotes process i with i ∈ {0, 1}.

5.5 Enhanced Skeletons

One of the primary goals of OpenMP is to exploit data parallelism which is also known as loop-
level parallelism. This form of parallelism naturally comes into play when executing loops. The
main idea behind parallelizing a loop is to distribute the loop passes among all collaborating
threads such that the execution time is roughly divided by the number of threads. Obviously, this
is only possible if there do not exist any data dependencies, i.e. if the result of executing an
arbitrary loop pass does not depend on the result of executing a former loop pass. This section
shows how OpenMP directives are used to speed up the execution of certain functions on the
example of the mapInPlace skeleton (cf. Listing 6). Note that some implemented skeletons are
enhanced in this way such that the execution on a multi-core processor will be much faster than
compared to a single-core processor.

Recall that the mapInPlace skeleton replaces each element of the sparse matrix by the result
of applying the given function f to it. Thus, the given function f must accept and return elements
of type T. Since the mapInPlace skeleton only changes the state of the sparse matrix and does
not return a new one, its return type is void (cf. line 1). The following two lines declare some
variables used for the number of locally stored submatrices (ns), the number of elements of the
current submatrix (ne), a pointer to the current submatrix (submatrix), and the value of the current
element (value).

Let us first explain the function without the OpenMP directive by simply ignoring the line
starting with #pragma (cf. line 7). Basically, the skeleton iterates over all locally stored sub-
matrices, reads the value of each element, and overwrites it with the result of applying f to
it. The iteration over the locally stored submatrices is performed by the loop in line 8. The
first thing we do when entering a new loop pass is to store a pointer to the current submatrix
since it will be used quite often later on (cf. line 9). Note that submatrices is a global variable
of type std::vector<Submatrix<T>*> which contains all locally stored submatrices. Next, we
need to determine the number of elements stored by the current submatrix in order to iterate
over them. Since this information is stored by each submatrix, we can access it via the function
getElementCountLocal (cf. line 10). The following loop is used to iterate over all elements of the
current submatrix (cf. line 12). The loop index j can be used to access a local element of the
current submatrix and store its value in value (cf. line 13). Note that by doing so, we bypass the
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implemented compression scheme and work directly on the raw values, which is much faster (cf.
Section 5.3). If value is zero, we do not need to do anything and may simply continue with the
next iteration. If value is non-zero, we apply the given function f to it and store the result by again
using the loop index j as a local index of the current submatrix (cf. line 16).

1 void mapInPlace(T (*f)(T)) {
2 int ne;
3 int ns = getSubmatrixCount();
4 Submatrix* submatrix;
5 T value;
6

7 #pragma omp parallel for private(ne, submatrix, value)
8 for(int i = 0; i < ns; i++) {
9 submatrix = submatrices.at(i);

10 ne = submatrix->getElementCountLocal();
11

12 for(int j = 0; j < ne; j++) {
13 value = submatrix->getElementLocal(j);
14

15 if(value != 0) {
16 submatrix->setElementLocal(f(value), j);
17 } } } }

Listing 6: Complete source code of the mapInPlace skeleton. Note the OpenMP directive in line
7.

Let us now consider how this function can be improved with an OpenMP directive. First
of all, we observe that the execution of the outer loop in line 8 is suitable for parallelization,
since there are no data dependencies inside the loop body. This can be achieved by inserting
the OpenMP parallel for directive4 just before the loop (cf. line 7). When encountering such a
directive, the runtime environment creates a thread team and distributes the loop passes between
them. For example, if a team of two threads encounters a loop with ten iterations, each thread
is assigned five iterations: The first thread executes the iterations with indexes zero to four, the
second thread executes the iterations with indexes five to nine.5 The number of threads created
can be user-defined via the optional clause num_threads.6 If omitted, the runtime environment
creates one thread for each available processor. The directive is used in conjunction with the
optional private clause which is absolutely vital here. In order to understand its purpose, we
need to recapitulate that OpenMP is an API developed for shared memory programming. In such
an environment, all threads have access to so-called shared variables. Per default, all variables
used inside a parallel region are shared, i.e. there is only a single variable in memory which is
accessed by all threads. Without the private clause, the variables declared in lines 2–5 would be
shared variables which might cause strange and irreproducible behaviour. Imagine the following
scenario: Thread t1 enters the outer loop, stores the number of locally available elements of the
current submatrix, and prepares to execute the inner loop (cf. lines 10–12). Now imagine a second
thread t2 which overwrites the value of ne before t1 enters the inner loop. Since ne is a shared
variable, all threads read from and write to the same memory location, such that t1 might read a
different value when initializing the inner loop than it previously wrote to memory. Obviously, this
is not the intended behaviour. In order to correctly parallelize the loop, each thread must have its
own, i.e. private copy of each variable used inside the loop body. This behaviour can be achieved
by using the private clause which expects a comma separated list of variables such that each
thread has a private copy of the variables declared inside the list.

4In general, all OpenMP pragmas have the form #pragma omp <directive> [clauses] where each clause may have a
comma separated list of arguments.

5This schedule is called static and is the default behaviour. Other schedules are dynamic, guided, and runtime.
6The number of threads created by a parallel region can also be controlled by means of the OpenMP function

omp set num threads. If set to 1, OpenMP is effectively disabled.
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One question remains unanswered: Why don’t we also parallelize the inner loop in line 12?
This is due to the fact that creating and destroying a thread team is not totally for free. If we
would also try to parallelize the inner loop, every time a thread belonging to the thread team of
the outer loop encounters a nested for directive, it would create a new thread team and destroy
it after executing the loop. Summing up the additional overhead, it is very likely that this approach
is even slower than the sequential one. Anyway, if the outer loop already created a single thread
for each available processor, there are no more processors left to execute threads in parallel. In
general, parallelizing nested for-loops only pays off if the outer loop does not use all available
processors. If this is the case, parallelizing inner loops can speed up a program, although it will
introduce additional overhead by repeatedly creating and destroying thread teams.
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Chapter 6

Case Studies

In the following sections, we give two short examples, which demonstrate how Muesli can be used
for parallel programming.

6.1 Combining Task and Data Parallelism

The following example is intended to show the main features of our skeleton library and how to
use them. We are going to cover currying, partial applications, skeleton topologies, and how to
combine task and data parallel skeletons. The example is intended to run on np = 6 processes
and uses the task parallel skeleton Pipe in combination with the atomic building blocks Initial,
Atomic, and Final as well as our distributed data structure for general sparse matrices.

The implemented skeleton topology is depicted in Figure 6.1. The Initial process creates
ten numbers ranging from 0 to 9 and sends each of them to the Atomic process. This process
uses each number received from the Initial process to create a distributed sparse matrix. Since
the Atomic process internally consists of four processes, it is used to perform some data parallel
computations. Afterwards, the result of these computations is sent to the Final process which
simply outputs it on the console. At this point it is clear why we use 6 processes: One process is
used by each the Initial and the Final process and four processes are used by the Atomic process.

Farm
Pipeline

Pipeline

FarmInitial Final

Atomic Atomic Atomic...
...

Atomic

Atomic

Initial

Atomic

Final

Farm 1

Atomic

Atomic

Initial Final

Farm 2

Atomic

Atomic

Atomic

Pipeline

Atomic
Pipeline

Initial Final

Figure 6.1: Skeleton topology used for our example.

Let us now have a look at the corresponding source code (cf. Listing 7). Prior to using
our skeleton library, the user first has to include the header file Muesli.h (cf. line 1). By doing
so, all task and data parallel skeletons described in the previous sections can be used without
including any further header files. The main function of our program can be found in lines 35–45.
First of all, we must call the function InitSkeletons before we can instantiate any skeletons (cf.
line 37). This is of outmost importance, since, as the name suggests, the function performs some
crucial tasks such as initializing the MPI environment, determining the number of processes and
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its ID, respectively. Now, we are able to create our skeletons (cf. lines 39–42). First of all, we
create the Initial process. As explained in Section 4.1.1, the process must be parameterized
with the problem type it is going to create. Moreover, the process must be passed a pointer to
a function which creates the problems. Since each of our problems consists of a single integer,
we parameterize the process with int. The function used for creating the problems is defined in
lines 9–17 and is expected to return a pointer to the problem it just created. Note that the return
type of the createProblem function must be a pointer to the type the Initial process has been
parameterized with. This is no coincidence, but in fact mandatory. In order to indicate that all
problems have been created, createProblem may simply return NULL (cf. line 16).

Next, we create the Atomic process (cf. line 40). As explained in Section 4.1.3, the process
must be parameterized with the problem type it is going to receive and with the solution type it
is going to produce. Both parameters are set to int, since we expect to receive integer values
from the Initial process and send integer values to the Final process. Again, it is important
that you provide the process with the correct types, since otherwise your program will not compile.
Besides parameterizing the process, we need to pass two arguments to it: A pointer to a function
which is executed to transform a problem into a solution and the number of processes which are
used internally. As already mentioned above, the Atomic process will use four internal processes
in order to execute some data parallel skeletons. These finally come into play in the function
duplicate which is passed as an argument to the Atomic process. The function is defined in
lines 19–29 and, according to the parameterization of the process, is expected to return a solu-
tion of type int* for each problem of type int* it receives. Upon receiving a problem, the function
creates a new distributed sparse matrix A of size 4× 4 and divides it into submatrices of size 2× 2
(cf. line 21). Thus, the whole sparse matrix is split into four submatrices such that each of the four
Atomic processes stores one submatrix. Next, the elements in the upper left and the lower right
corner of the sparse matrix are set to 1 (cf. lines 23 and 24). Then, we apply the data parallel
skeleton mapInPlace to the sparse matrix (cf. line 25 and Section 3.4.3). The skeleton expects a
pointer to a function and will replace each element of the sparse matrix by applying the given func-
tion to it. However, we are passing a partial application (cf. Section 2.3) rather than an ordinary
function pointer. Note that the destinction between a partial application and a function pointer is
irrelevant to you, since each function expecting a function pointer is overloaded such that it can
also be passed a partial application. Partial applications are created by calling the curry function.
This function expects a function pointer as the sole argument and transforms the given function
into a partial application of type FctX where X is a placeholder for the number of arguments the
given function expects. Thus, calling curry(multiply) returns an anonymous partial application
of type Fct2. However, this partial application, let’s call it f , cannot be used by the mapInPlace
skeleton, since the skeleton expects a function of type Fct1, whereas f is of type Fct2. In order
to overcome this incompatibility, we need to pass an int argument to f , thus transforming f into
a partial application of type Fct1. This is done by applying the argument *problem to f . The
resulting partial application, let’s call it g, is created by replacing the first argument of multiply
by *problem. The function multiply is defined in line 7 and simply returns the product of the
given arguments a and b. Thus, g returns the product of *problem and the argument b, since a

is replaced by *problem. By doing so, A.mapInPlace(curry(multiply)(*problem)) replaces
each element of the sparse matrix by the result of multiplying the element with the problem re-
ceived. In order to verify the correctness of our implementation, we create the solution returned
by duplicate by means of the skeleton fold which reduces all values of the sparse matrix into a
single one by repeatedly applying the given function to all elements (cf. line 26 and Section 3.4.3).
The add function used with the skeleton is defined in line 6 and simply returns the sum of the given
values a and b. By doing so, the duplicate function doubles the value of the given argument.

Prior to creating the Pipe skeleton, we need to create the Final process which is respon-
sible for receiving the solutions created by the Atomic process (cf. line 41). As explained in
Section 4.1.2, the process must be parameterized with the solution type it is going to receive.
The parameter is set to int, since we expect to receive integer values from the Atomic process.
Again, it is important that you provide the process with the correct types, since otherwise your
program will not compile. As an argument, the process expects a pointer to a function which is
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executed upon receiving a solution. This function is defined in lines 31–33 and simply prints the
solution received to standard output.

Finally, we create the Pipe skeleton (cf. Section 4.2.3) and pass the formerly created process
initial, atomic, and final as arguments (cf. line 42). The whole computation is started by call-
ing the function start defined by the Pipe skeleton. This should output the numbers 0, 2, 4, 6, 8,
10, 12, 14, 16, and 18. To shut down our library, you should call the function TerminateSkeletons

(cf. line 46). This will finalize the MPI environment and free any previously allocated resources.

1 #include "Muesli.h"
2

3 static int numberOfProblems = 10;
4 static int currentProblem = 0;
5

6 int add(int a, int b) { return a + b; }
7 int multiply(int a, int b) { return a * b; }
8

9 int* createProblem(Empty dummy) {
10 if(currentProblem < numberOfProblems) {
11 int* problem = new int;
12 *problem = currentProblem++;
13 return problem;
14 }
15

16 return NULL;
17 }
18

19 int* duplicate(int* problem) {
20 int* solution = new int;
21 DistributedSparseMatrix<int> A(4, 4, 2, 2);
22

23 A.setElement(0, 0, 1);
24 A.setElement(3, 3, 1);
25 A.mapInPlace(curry(multiply)(*problem));
26 *solution = A.fold(add);
27

28 return solution;
29 }
30

31 void receiveSolution(int* solution) {
32 std::cout << "solution: " << *solution << std::endl;
33 }
34

35 int main(int argc, char* argv[]) {
36 try {
37 InitSkeletons(argc, argv, MSL_SERIALIZED);
38

39 Initial<int> initial(createProblem);
40 Atomic<int,int> atomic(duplicate, 4);
41 Final<int> final(receiveSolution);
42 Pipe pipe(initial, atomic, final);
43

44 pipe.start();
45

46 TerminateSkeletons();
47 } catch(Exception&) {
48 std::cout << "exception" << std::endl << std::flush;
49 } }

Listing 7: Example demonstrating the main features of Muesli.
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6.2 Mergesort

An important issue in the context of divide and conquer algorithms is object serialization due to
the fact that the subproblems generated by divide are typically smaller w.r.t. the size of their
representation than the problem that has been divided. The following example demonstrates the
implementation of MSL Serializable and the application of the StreamDC skeleton at the exam-
ple of the well-known Mergesort algorithm. The implemented skeleton topology is depicted in
Figure 4.2. The example is intended to run on np = 7 processes and generates an Initial, a
StreamDC, and a Final skeleton, which are combined with a Pipe. The Initial process gener-
ates divide and conquer problems and routes them to the StreamDC skeleton, which processes
them in parallel. The StreamDC skeleton internally consists of five solvers, from which three are
master solvers. That is, the StreamDC skeleton is able to process three problems in parallel at
the same time. The solutions are then routed to the Final process.

Listing 8 shows the corresponding source code. First of all, the user has to include the
header file Muesli.h (cf. line 1). By doing so, all task and data parallel skeletons described in
the previous sections can be used without including any further header files. An unsorted integer
array is represented as an instance of the class Problem, which stores the array of integer values
and the size of the array (cf. lines 7–36). Moreover, it is derived from MSL Serializable and
implements the methods getSize, reduce, and expand. getSize returns the size of the buffer
which is required to store the serialized object. In our case, we have to store the attribute size
and all values of the array. Thus, getSize returns sizeof(int) + sizeof(int) ∗ size. A contiguous
memory block corresponding to this size is passed to the method reduce, which copies the
attribute size and all values of the array to the buffer. In contrast, expand extracts this data in
the same sequence in which the data was written to the buffer. The first value read from the buffer
is the attribute size. This value is used to generate an integer array, which is than filled with the
remaining values stored in the buffer.

The main function of our program can be found in lines 128–144. First of all, the function
InitSkeletons must be applied in order to initialize Muesli. Then, the process topology is created
using C++ constructors. The Initial process is provided with a user defined function init.
The Initial process internally calls the init method, which creates five randomly generated integer
arrays of the size N = 220 = 1048576. These arrays are internally passed to the Initial process and
then routed to the StreamDC skeleton. In order to indicate that all problems have been created,
init may simply return NULL (cf. line 54). The StreamDC skeleton is provided with four user
defined functions divide, combine, solve, and isSimple. The isSimple operator is applied
to an unsorted array in order to test whether it is simple enough to sort it directly by solve. In
our implementation, the test is based on the size of the array which is compared to a threshold
T = 1024. If the array size is less or equal than T , the solve operator is applied and the array is
sorted sequentially (cf. lines 83–88). Otherwise, the array is divided into two half-size subarrays
by calling divide (cf. lines 90–104). Thus, each of the initial problems is divided into a total
of 1024 subproblems. The combine operator (cf. lines 106–122) takes an array of two sorted
subarrays selected by the StreamDC skeleton and merges them together. A Final process is
responsible for receiving the solutions created by the StreamDC skeleton.

Finally, we create the Pipe skeleton (cf. Section 4.2.3) and pass the formerly created pro-
cess initial, dc, and final as arguments (cf. line 136). The whole computation is started
by calling the function start defined by the Pipe skeleton. To shut down Mueslie the function
TerminateSkeletons (cf. line 141) must be applied. This will finalize the MPI environment and
free any previously allocated resources.
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1 #include "Muesli.h"
2

3 static int D = 2; // degree of the divide and conquer tree
4 static int N = 1048576; // problem size
5 static int THRESHOLD = 1024; // arrays of this size are simple
6 static int current = 0;
7 static int numOfProblems = 5;
8

9 class Problem: public MSL_Serializable {
10 public:
11 int size;
12 int* array;
13

14 Problem() {
15 }
16

17 virtual ˜Problem() {
18 delete[] array;
19 }
20

21 inline int getSize() {
22 return sizeof(int) + sizeof(int)*size;
23 }
24

25 void reduce(void* pBuffer, int bufferSize) {
26 int* adr1 = (int*) memcpy(pBuffer,&(this->size),sizeof(int));
27 adr1++;
28 int len = (this->size)*sizeof(int);
29 int* adr2 = (int*) memcpy(adr1,this->array,len);
30 }
31

32 void expand(void* pBuffer, int bufferSize) {
33 int* adr = (int*) pBuffer;
34 int size = *adr;
35 this->size = size;
36 this->array = new int[size];
37 adr++;
38 for (int i=0; i<size; i++) {
39 this->array[i] = *adr;
40 adr++;
41 }
42 }
43 }; // EOC Problem
44

45 Problem* init(Empty dummy) {
46 if (current < numOfProblems) {
47 Problem* prob = new Problem();
48 prob->size = N;
49 prob->array = new int[N];
50 for (int i=0; i<N; i++) {
51 prob->array[i] = rand()\%N;
52 }
53 current++;
54 return prob;
55 }
56 else {
57 return NULL;
58 }
59 }
60
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61 bool isSimple(Problem* p) {
62 return (p->size <= THRESHOLD);
63 }
64

65 void merge(int* a, int left, int mid, int right) {
66 int size = right-left;
67 int* temp = new int[size];
68 int i=0, j=0, k=0;
69 while ((left+i<mid) && (mid+j<right)) {
70 if(a[left+i]<a[mid+j]) {
71 temp[k++] = a[left+(i++)];
72 }
73 else {
74 temp[k++] = a[mid+(j++)];
75 }
76 }
77 while (left+i<mid) {
78 temp[k++] = a[left+(i++)];
79 }
80 while (mid+j<right) {
81 temp[k++] = a[mid+(j++)];
82 }
83 for (i=0; i<size; i++) {
84 a[left+i] = temp[i];
85 }
86 delete[] temp;
87 }
88

89 void mergesort(int* a, int left, int right) {
90 if (right-left>1) {
91 int mid = (left+right)/2;
92 mergesort(a, left, mid);
93 mergesort(a, mid, right);
94 merge(a, left, mid, right);
95 }
96 }
97

98 Problem* solve(Problem* p) {
99 int* a = p->array;

100 int size = p->size;
101 mergesort(p->array,0,p->size);
102 return p;
103 }
104

105 Problem** divide(Problem* p) {
106 int pSize = p->size;
107 Problem** result = new Problem*[2];
108 result[0] = new Problem();
109 result[0]->size = pSize/2;
110 result[0]->array = new int[pSize/2];
111 for (int i=0; i<pSize/2; i++) {
112 result[0]->array[i] = p->array[i];
113 }
114 result[1] = new Problem();
115 result[1]->size = (pSize+1)/2;
116 result[1]->array = new int[(pSize+1)/2];
117 for (int i=(pSize+1)/2; i<pSize; i++) {
118 result[1]->array[i-(pSize+1)/2] = p->array[i];
119 }
120 return result;
121 }
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122 Problem* combine(Problem** p) {
123 int sizeP0 = p[0]->size, sizeP1 = p[1]->size, size = sizeP0 + sizeP1;
124 Problem* result = new Problem();
125 result->size = size;
126 result->array = new int[size];
127 int i=0, j=0, k=0;
128 while (i < sizeP0 && j < sizeP1) {
129 if (p[0]->array[i] <= p[1]->array[j]) {
130 result->array[k++] = p[0]->array[i++];
131 }
132 else {
133 result->array[k++] = p[1]->array[j++];
134 }
135 }
136 if (i == sizeP0) {
137 while (j < sizeP1) {
138 result->array[k++] = p[1]->array[j++];
139 }
140 }
141 else {
142 while (i < sizeP0) {
143 result->array[k++] = p[0]->array[i++];
144 }
145 }
146 return result;
147 }
148

149 void fin(Problem prob) {
150 // do something with the sorted array ...
151 }
152

153 int main(int argc, char* argv[]) {
154 try {
155 InitSkeletons(argc,argv);
156

157 // create the process topology
158 Initial<Problem> initial(init);
159 StreamDC<Problem,Problem> dc(divide,combine,solve,isSimple,D,5,3);
160 Final<Problem> final(fin);
161 Pipe pipe(initial,dc,final);
162

163 // start the process topology
164 pipe.start();
165

166 TerminateSkeletons();
167 }
168 catch(Exception&) {
169 std::cout << "Exception" << std::endl << std::flush;
170 }
171 }

Listing 8: A task parallel implementation of Mergesort.



�75



� 76

References

[1] MPI. Message Passing Interface Forum. http://www.mpi-forum.org/docs/
mpi-11-html/mpi-report.html, 2008.

[2] E. Alba and F. Almeida. MaLLBa: A Library of Skeletons for Combinatorial Search. In
Proceedings of the Euro-Par ’02, volume 2400 of LNCS, pages 927–932. Springer, 2002.

[3] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press,
1989.

[4] J. Darlington, Y. Guo, H.To, and J. Yang. Parallel Skeletons for Structured Composition. In
Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 19–28. ACM Press, 1995.

[5] H. Kuchen and M. Cole. The Integration of Task and Data Parallel Skeletons. In Parallel
Processing Letters, volume 12(2), pages 141–155, 2002.

[6] H. Kuchen. A Skeleton Library. In Euro-Par ’02, volume 2400 of LNCS, pages 620–629.
Springer, 2002.

[7] K. Matsuzaki, K. Emoto, H. Iwasaki, and Z. Hu. A Library of Constructive Skeletons for
Sequential Style of Parallel Programming. In Proceedings of 1st international Conference on
Scalable Information Systems (INFOSCALE), 2006.

[8] S. Pelagatti. Task and Data Parallelism in P3L. In F.A. Rabhi and S. Gorlatch, editors,
Patterns and Skeletons for Parallel and Distributed Computing, pages 155–186. Springer,
2003.

[9] G. H. Botorog and H. Kuchen. Efficient Parallel Programming with Algorithmic Skeletons. In
Proceedings of the Euro-Par ’96, volume 1123 of LNCS, pages 718–731. Springer, 1996.

[10] G. H. Botorog and H. Kuchen. Efficient High-Level Parallel Programming. In Theoretical
Computer Science, volume 196, pages 71–107, 1998.

[11] J. Darlington, A.J. Field, and P.G. Harrison. Parallel Programming Using Skeleton Functions.
In Proceedings of Parallel Architectures and Languages Europe (PARLE), volume 694 of
LNCS. Springer, 1993.

[12] J. Darlington, Y. Guo, and H.W. To. Functional Skeletons for Parallel Coordination. In Pro-
ceedings of Euro-Par’95, volume 966 of LNCS 966. Springer, 1995.

[13] H. Kuchen, R. Plasmeijer, and H. Stoltze. Efficient Distributed Memory Implementation of a
Data Parallel Functional Language. In Proceedings of the PARLE ’94, volume 817 of LNCS,
pages 466–475. Springer, 1994.

[14] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. In Parallel Computing, volume 30(3), pages 389–406, 2004.

[15] D. Skillicorn. Foundations of Parallel Programming. Cambridge U. Press, 1994.

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html


�77

[16] H. Bischof, S. Gorlatch, and R. Leshchinskiy. DatTel: A Data-parallel C++ Template Library.
In Parallel Processing Letters, volume 13(3), pages 461–472, 2003.

[17] H. Bischof. Systematic Development of Parallel Programs Using Skeletons. PhD thesis,
Westfälische Wilhelms-Universität Münster, 2005.

[18] I. Foster, R. Olson, and S.Tuecke. Productive Parallel Programming: The PCN Approach. In
Scientific Programming, volume 1(1), pages 51–66, 1992.

[19] A. Benoit, M. Cole, J. Hillston, and S. Gilmore. Flexible Programming with eSkel. In Pro-
ceedings of the Euro-Par ’05, volume 3648 of LNCS, pages 761–770. Springer, 2005.

[20] M. Cole. The Skeletal Parallelism Web Page. http://homepages.inf.ed.ac.uk/mic/
Skeletons/, 2008.

[21] M. Danelutto, R.D. Meglio, S. Orlando, and S. Pelagatti. A Methodology for the Development
and the Support of Massively Parallel Programms. In Future Generation Computer Systems,
volume 8, pages 205–220. Elsevier, 1992.

[22] B. Bacci, M. Danelutto, S. Orlando, and S. Pelagatti. P3L: A Structured High Level Pro-
gramming Language and its Structured Support. In Concurrency: Practice and Experience,
volume 7(3), pages 225–255. John Wiley & Sons, 1995.

[23] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for Data Parallelism in P3L. In
Proceedings of the Third International Euro-Par Conference on Parallel Processing, volume
1300 of LNCS, pages 619–628. Springer, 1997.

[24] M. Aldinucci, M. Danelutto, and P. Teti. An Advanced Environment Supporting Structured
Parallel Programming in Java. In Future Generation Computer Systems, volume 19, pages
611–626. Elsevier, 2003.

[25] M. Danelutto and P. Teti. Lithium: A Structured Parallel Programming Environment in Java.
In Proceedings of Computational Science (ICCS), volume 2330 of LNCS, pages 844–853.
Springer, 2002.

[26] M. Aldinucci, M. Danelutto, and P. Dazzi. Muskel: A Skeleton Library Supporting Skeleton
Set Expandability. In Scalable Computing: Practice and Experience, volume 8(4), pages
325–341. SWPS, 2007.

[27] K. Matsuzaki, K. Kakehi, and H. Iwasaki. A Fusion-Embedded Skeleton Library. In Proceed-
ings of the 10th International Euro-Par Conference on Parallel Processing, volume 3149 of
LNCS, pages 644–653. Springer, 2004.

[28] Y. Karasawa and H. Iwasaki. Parallel Skeletons for Sparse Matrices in SkeTo Skeleton Li-
brary. Information Processing Society of Japan (IPSJ), 4:167–181, 2008.
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